
This is a post-peer-review, pre-copyedit version of an article published in Journal of Scheduling (ISSN 1099-1425).
The final authenticated version is available online at link.springer.com:
https://dx.doi.org/10.1007/s10951-018-0561-5

Single-Machine Batch Scheduling to Minimize the Total Setup Cost in
the Presence of Deadlines

Dominik Kress · Maksim Barketau · Erwin Pesch

Received: date / Accepted: date

Abstract We address the single-machine batch scheduling
problem with the objective of minimizing the total setup
cost. This problem arises when there are n jobs that are
partitioned into F families and when setup operations are
required whenever the machine switches from processing
a job of one family to processing a job of another fam-
ily. We assume that setups do not require time but are as-
sociated with a fixed cost which is identical for all setup
operations. Each job has a processing time and an associ-
ated deadline. The objective is to schedule all jobs such that
they are on time with respect to their deadlines and the to-
tal setup cost is minimized. We show that the decision ver-
sion of this problem is NP-complete in the strong sense. Fur-
thermore, we present properties of optimal solutions and an
O(n logn+ nF) algorithm that approximates the cost of an
optimal schedule by a factor of F . The algorithm is analyzed
in computational tests.

Keywords Batch scheduling · Job families · Setup cost ·
Strong NP-hardness · Approximation algorithm · EDD-
schedule · GT-schedule

D. Kress (B) · E. Pesch
Management Information Science
University of Siegen
Kohlbettstr. 15, 57068 Siegen, Germany
E-mail: {dominik.kress, erwin.pesch}@uni-siegen.de

M. Barketau
United Institute of Informatics Problems
National Academy of Sciences of Belarus
220012 Minsk, Belarus
E-mail: barketau@mail.ru

E. Pesch
Center for Advanced Studies in Management
HHL Leipzig
Jahnallee 59, 04109 Leipzig, Germany

1 Introduction and Problem Description

When sequentially processing jobs on a single machine in an
industrial environment, the change of one job to another may
result in a significant setup cost. This cost may, for exam-
ple, be due to the need to modify the machine by installing
a different set of tools or loading a new software. In such
an environment it can be beneficial to group the jobs into
batches that share the same setup requirements and can thus
be processed contiguously. However, the processing of large
batches may delay the processing of important jobs that are
included in other batches, which may eventually result in
missing the deadlines of these jobs. Hence, there is a trade-
off between minimizing the total setup cost of a schedule
and the need to guarantee on-time production of jobs.

In the above context, we consider the following schedul-
ing problem. There are n jobs to be sequenced on a single
machine. Each of these jobs belongs to one of F nonempty
families. Jobs within a family are sufficiently similar to be
processed on the machine without the need for intermedi-
ate setups. Family Ff , f ∈ {1, . . . ,F}, consists of n f jobs.
Hence, n = ∑

F
f=1 n f . We denote the j-th job of family Ff ,

f ∈ {1, . . . ,F}, by ( j, f ). The processing time of this job is
denoted by p j, f ∈ N. Its processing must be completed no
later than its deadline d j, f ∈N and it may not be preempted.
We assume that the jobs of each family are sorted and in-
dexed in non-decreasing order of their respective deadlines.
Jobs with identical deadlines within a family are arranged
in the order of increasing indices. When the processing of
a job of a specific family finishes and the processing of an-
other family’s job starts, as well as at the beginning of the
schedule, a setup is needed. These setups are assumed to
not require time. However, there is a setup cost s ∈ N as-
sociated with each setup. This cost is identical for all setup
operations. As indicated above, a batch is a set of jobs of the
same family that is processed between two setups of a given



2 D. Kress, M. Barketau, E. Pesch

schedule. The formation of batches is subject of the decision
making process under consideration in this paper. The pro-
cessing of a batch is completed, when the processing of all
jobs of the batch is completed. We assume that the starting
and completion time of each job, i.e. the time instants when
the job is started to be processed and when its processing is
completed, is independent of the other jobs of its batch. That
is, a job “becomes available” (Potts and Kovalyov, 2000) im-
mediately after its processing on the machine is completed,
even if the processing of its corresponding batch is not yet
completed. This is usually referred to as a job availabil-
ity model (see, for example, Allahverdi et al., 1999, 2008;
Potts and Kovalyov, 2000). The problem is to find a sched-
ule that minimizes the total setup cost and that is feasible
with respect to the deadlines. As the setup cost is identical
for all setup operations, this is equivalent to minimizing the
number of batches of the schedule.

1.1 Related Literature and Applications

There exists a plenitude of papers dealing with schedul-
ing problems that involve setup considerations. Instead of
summarizing all of these papers, we refer to Błażewicz
et al. (2007) and the excellent and extensive reviews by Al-
lahverdi (2015), Allahverdi et al. (1999, 2008) and Potts
and Kovalyov (2000). These review papers introduce mod-
ifications of the classical three-field notation for scheduling
problems proposed by Graham et al. (1979). Based on these
modifications, we denote the problem under consideration
in this paper by 1 |d j, f ,b = n,SCsi,b = s |T SC. Here, the first
field indicates that we are concerned with a one-machine
problem. The second field specifies the job characteristics.
Each job ( j, f ), f ∈ {1, . . . ,F}, has an associated deadline
d j, f , and there is no exogenous upper bound on the maxi-
mum batch size b, i.e. the maximum batch size may be equal
to the number of jobs, b = n. Furthermore, the setup cost
is sequence-independent, i.e. it depends solely on the batch
that is to be processed, and it is equal to s for all setups. This
is indicated by SCsi,b = s. Finally, the third field refers to the
objective of minimizing the total setup cost (TSC).

The specific problem considered in this paper has first
been considered by Bruno and Downey (1978), who refer to
its decision version as the Schedule Cost Problem. The au-
thors provided a proof for its NP-completeness, while it re-
mained open whether the problem is strongly NP-complete.
Even though there exists closely related research on similar
problem settings where setups are assumed to require time
(initiated by Bruno and Downey, 1978, see Cheng et al.,
2003; Lu and Yuan, 2007; Tanaev et al., 1998), this ques-
tion has - to the best of the authors’ knowledge - not yet
been answered.

There is a wide variety of practical applications of
batch scheduling problems. Examples include semiconduc-

tor wafer fabrication and semiconductor testing (see, for
example, Herrmann and Lee, 1995; Mehta and Uzsoy,
1998), task scheduling on computer systems (e.g. Bruno
and Downey, 1978), or the production of colors of paint
(see Monma and Potts, 1989, and the references therein).
Another application of the problem under consideration in
this paper arises, when scheduling inspections of patients on
complex medical equipment, as, for example, magnetic res-
onance tomographs (MRT). Here, the patients can be viewed
as jobs, each of which is related to a specific section of the
human body (e.g. heart or brain) that requires inspection no
later than by a specified deadline. Patients that require in-
spection of the same body section must be processed and
evaluated by a specific doctor and her assistants. The avail-
ability of this medical team is especially arranged for each
scheduled batch of these patients. A fixed cost is charged
for each batch. This cost may, for example, relate to the
cost of preparing the team as each member of the team is
to get ready to finally perform the task expected to be done.
Moreover, there may be additional payments to the doctors
and the assistants for processing a batch. Naturally, the total
scheduling cost must be minimized.

1.2 Overview and Contribution of the Paper

The contribution and structure of this paper is as follows.
First, we provide a proof for the strong NP-completeness
of the decision version of 1 | d j, f ,b = n,SCsi,b = s | T SC
and thus answer the aforementioned open question on the
problem’s complexity status posed by Bruno and Downey
(1978). This is subject of Section 2. Second, in Section 3,
we present an O(n logn+ nF) algorithm that approximates
the cost of an optimal schedule by a factor of F . It is based
on some properties of optimal schedules that we derive in
Section 3.1. The algorithm itself is described in Section 3.3
and it is analyzed in computational tests in Section 4. The
paper closes with a summary in Section 5.

2 Computational Complexity

We will make use of the strongly NP-complete 3-Partition
problem, which is defined as follows (Garey and Johnson,
1979): Given 3m+ 1 integers u1, . . . ,u3m,B with ∑

3m
i=1 ui =

mB and B
4 < ui <

B
2 ∀i = 1, . . . ,3m. Does there exist a parti-

tion of the set {1, . . . ,3m} into m subsets U1, . . . ,Um, such
that ∑i∈U j ui = B ∀ j = 1, . . . ,m? Note that for every yes-
instance of 3-Partition, we have |Ui|= 3 ∀i = 1, . . . ,m.

We will present a pseudo-polynomial transformation
(Garey and Johnson, 1979) from 3-Partition to the decision
version of 1 |d j, f ,b = n,SCsi,b = s |T SC, which is defined in
analogy to its optimization version and asks if there exists
a feasible schedule with a total scheduling cost of no more



Single-Machine Batch Scheduling 3

than a given K. This transformation will prove strong NP-
hardness of 1 | d j, f ,b = n,SCsi,b = s |T SC. The proof is an
adaption of the proofs presented by Cheng et al. (2003) and
Lu and Yuan (2007), who provide the following lemma.

Lemma 1 (Lu and Yuan (2007)) Suppose µ1, . . . ,µm and
B are m+ 1 positive integers such that µ1 + · · ·+ µm = mB
and

(m+1)
j−1

∑
i=1

µi +
m

∑
i= j

iµi ≤ (m+1)
j−1

∑
i=1

B+
m

∑
i= j

iB

holds for each j with 1≤ j ≤ m. Then µ1 = · · ·= µm = B.

We will additionally make use of the following lemma.

Lemma 2 Let I be an instance of 1 | d j, f ,b = n,SCsi,b =

s | T SC. If there exists a feasible schedule for I, then there
exists an optimal schedule S with the jobs of each family be-
ing processed in nondecreasing order of their deadlines, i.e.
for any family Ff , f ∈ {1, . . . ,F}, and any two jobs (i, f )
and ( j, f ), i 6= j, (i, f ) is scheduled before ( j, f ) in S if
di, f ≤ d j, f .

Proof The correctness of the claim follows from some sim-
ple job shifting and interchange arguments (see the analo-
gous proof by Gerodimos et al., 1999, for a closely related
problem class; cf. also Lu and Yuan, 2007).

Consider an optimal schedule S of I and let (i, f ) and
( j, f ), f ∈ {1, . . .F}, be two jobs i 6= j such that (i, f ) is
the last job of family Ff that is processed before ( j, f ) in
S, where d j, f < di, f . Now, modify S as follows. First, shift
job (i, f ) to be processed right before job ( j, f ) while not
changing the respective order of other jobs. Second, inter-
change jobs (i, f ) and ( j, f ). It is easy to see that the result-
ing schedule is feasible. Moreover, the number of batches
does not increase due to the modification. Hence, the result-
ing schedule is optimal. By repeating this procedure for all
suitable pairs of jobs, we obtain an optimal schedule with
the jobs of each family being processed in non-decreasing
order of their deadlines. ut

In order to align with well established terms in the schedul-
ing literature, we will refer to a sequence of jobs in nonde-
creasing order of their deadlines (as used in Lemma 2) as an
earliest due date (EDD) order in the remainder of this paper.

While the proof of the following Theorem 1 is based
on ideas of Cheng et al. (2003) and Lu and Yuan (2007)
and partially follows similar arguments as these proofs, it
especially differs in the use and (sub-) proofs of Properties
1–5.

Theorem 1 The decision version of 1 | d j, f ,b = n,SCsi,b =

s |T SC is strongly NP-complete.

Table 1 Construction of IB

Scheduling cost: K = (7m+1)s, with s ∈ N arbitrary
Number of jobs: n = 3m(m+1)+2m+1
Number of families: F = 4m+1
Distinct deadlines: D j = (2 j−1)(X +Y )

+ 3m(m+1)
2 Z + 3( j−1)(2m− j+2)

2 Z

+(m+1)
j−1
∑

i=1
B

+
m
∑

i= j
iB for 1≤ j ≤ m+1

f = 1, . . . ,3m: Ff = {( j, f )|1≤ j ≤ m+1}
p j, f = u f +Z ∀( j, f ) ∈ Ff
d j, f = D j ∀( j, f ) ∈ Ff

f = 3m+1, . . . ,4m: Ff = {( j, f )|1≤ j ≤ 2}
p j, f = X +Y ∀( j, f ) ∈ Ff
d j, f = D f−3m−1+ j ∀( j, f ) ∈ Ff

f = 4m+1: Ff = {(1, f )}
p1, f = X +Y
d1, f = Dm+1

Proof It is easy to see that the decision version of 1 |d j, f ,b=
n,SCsi,b = s |T SC is in NP.

Given an instance IP of 3-Partition, we construct an in-
stance IB of the decision version of 1 | d j, f ,b = n,SCsi,b =

s |T SC in polynomial time as summarized in Table 1.
Here, X , Y , and Z are arbitrary, nonnegative integers with

X >
1
2
(m2−m)B,

Z >
1
4
(m2 +m)B,

and

Y ≥ 3
2
(m2−m)Z.

Observe that family Ff relates to u f , f ∈ {1, . . . ,3m}.
Furthermore, note that

D1 =
m2 +m

2
(3Z +B)+X +Y

and

D j = D j−1 +(m− j+2)(3Z +B)+2(X +Y )

for 2 ≤ j ≤ m+1. Hence, Di < D j for i, j ∈ {1, . . . ,m+1}
and i < j.

Figure 1 illustrates the construction of IB.
In the following, we will show that IP is a yes-instance

if and only if IB is a yes-instance and that we have therefore
constructed a pseudo-polynomial transformation (Garey and
Johnson, 1979) from 3-Partition to the decision version of
1 | d j, f ,b = n,SCsi,b = s |T SC, so that the latter problem is
strongly NP-complete. We will refer to all jobs with dead-
line D j, j ∈ {1, . . . ,m+ 1}, as D j-jobs. Furthermore, given
a schedule for IB, we will denote the completion time of the



4 D. Kress, M. Barketau, E. Pesch

F1

F2

F3

. . .

F3m−2

F3m−1

F3m

F3m+1

. . .

F3m+m

F4m+1

j 1 . . . m+1
p j,1 u1 +Z . . . u1 +Z
d j,1 D1 . . . Dm+1

.

.

.

j 1 . . . m+1
p j,3m u3m +Z . . . u3m +Z
d j,3m D1 . . . Dm+1

j 1 2
p j,3m+1 X +Y X +Y
d j,3m+1 D1 D2

.

.

.

j 1 2
p j,3m+m X +Y X +Y
d j,3m+m Dm Dm+1

j 1
p j,4m+1 X +Y
d j,4m+1 Dm+1

u1

u2

u3

...

u3m−2

u3m−1

u3m

Fig. 1 Construction of IB

last D j-job within this schedule by C j, j ∈ {1, . . . ,m+ 1}.
We will restrict ourselves to the nontrivial case m > 1.

Assume that IP is a yes-instance. Then it is possible to
re-label the indices of u1, . . . ,u3m and their corresponding
families in IB, such that u3i−2+u3i−1+u3i =B for 1≤ i≤m.
Now, let each family Ff , f ∈ {3m+1, . . . ,4m+1}, act as a
batch and divide all remaining families Ff , f ∈ {1, . . . ,3m},

into exactly two batches B f =
{
( j, f )|1≤ j ≤

⌈
f
3

⌉}
and

A f = Ff \B f . Construct a schedule S by sequencing these
batches as follows:

S = B1,B2, . . . ,B3m,F3m+1,A1,A2,A3,F3m+2, . . . ,A3m−2,

A3m−1,A3m,F4m+1.

The jobs within each batch are sequenced in their EDD or-
der. It is easy to see that this requires 7m+1 setup operations
so that the total scheduling cost is K. Furthermore,

C1 =
m

∑
i=1

i
3i

∑
j=3i−2

u j +
m

∑
i=1

3iZ +X +Y =
m

∑
i=1

(iB+3iZ)+X +Y

= (B+3Z)
m

∑
i=1

i+X +Y = D1,

and

C j =C j−1 +(m− j+2)(3Z +
3( j−1)

∑
i=3( j−2)+1

ui)+2(X +Y )

=C j−1 +(m− j+2)(3Z +B)+2(X +Y ) = D j

for 2 ≤ j ≤ m+1. Hence, all jobs are on time and we have
established a solution to IB.

Now assume that IB is a yes-instance and let S be a fea-
sible schedule with a total scheduling cost of no more than
K that satisfies the EDD property of Lemma 2. Then, for
each batch of a family Ff , f ∈ {1, . . . ,4m + 1}, in S and
any two jobs (i, f ) and ( j, f ) with i < j that are included
in the batch, all jobs of the set {(k, f )|i < k < j} are in-
cluded in the batch as well. If this were not the case, the
EDD property would not be fulfilled, which can be seen
when recalling that Di < D j for i, j ∈ {1, . . . ,m + 1} and
i < j. Additionally, note that all families F1, . . . ,F3m include
exactly one D1-job. We denote the unique batch of family
Ff , f ∈ {1, . . . ,3m}, that includes a D1-job by B f and re-
label the indices of F1, . . . ,F3m and their corresponding in-
teger numbers of IP, such that |B1| ≤ |B2| ≤ · · · ≤ |B3m|.
Hence, B f = {(1, f ), . . . ,(|B f |, f )} for f ∈ {1, . . . ,3m}.

We will make use of the following property:
Property 1. Let S be constructed as described above. Then
C j <C j+1 for all j ∈ {1, . . . ,m}.
Proof of Property 1. We will prove Property 1 by mathemat-
ical induction. Consider the base case j = 1 and assume to
the contrary that C1 ≥C2. Then, by definition of 3-Partition
and the construction of IB, we have

C1 ≥ 2mB+6mZ +3(X +Y ). (1)

The first two summands of the right hand side of (1) re-
late to the processing of the D1- and D2-jobs of families Ff ,
f = 1, . . . ,3m, while the last summand considers these jobs
in families 3m+ 1 and 3m+ 2. It is easy to show that (1)
necessarily results in C1 > D1 if

X >
1
4
(
m2−3m

)
B,

and

Y ≥ 3
4
(
m2−3m

)
Z,

by some straightforward algebraic transformations. Hence,
by choosing X and Y as described in the above construction
of IB, at least one D1-job is late, which contradicts the feasi-
bility of S. Thus, we must have C1 <C2, and we have proven
the base case.

Now, let j ≥ 2 and assume that Ci < Ci+1 for all i < j.
Assume that C j ≥C j+1. Then

C j ≥ ( j+1)mB+( j+1)3mZ +(2 j+1)(X +Y )

in analogy to (1). One can easily show that this results in
C j > D j if

X >
1
4
(
m2−3m− j2 +3 j−2

)
B,

and

Y ≥ 3
4
(
m2−3m− j2 +3 j−2

)
Z.



Single-Machine Batch Scheduling 5

Additionally, note that f ( j) := − j2 + 3 j− 2 is monotoni-
cally decreasing in j for j ≥ 2. Hence, by choosing X and
Y as above, at least one D j-job is late, which contradicts the
feasibility of S. We must therefore have C j < C j+1, which
proves the inductive step and the correctness of Property 1.

By making use of Property 1, we can derive the follow-
ing additional property:
Property 2. Let S be constructed as described above. Then,
for all j ∈ {1, . . . ,m}, S can be transformed into a feasible
schedule S′, where the jobs (1,3m+ j) and (2,3m+ j) are
processed without intermediate setup, i.e. where (2,3m+ j)
is processed directly after (1,3m+ j), without increasing the
number of setup operations.
Proof of Property 2. Assume there is a family F3m+ j, j ≤m,
where (2,3m+ j) is not processed directly after (1,3m+ j)
in S. Then there is one setup operation immediately before
and another one immediately after job (1,3m+ j) in S. We
can assume that the same holds for job (2,3m+ j), because,
if this job is the last job that is processed in S (which is only
possible for j = m because of Property 1 and the construc-
tion of IB) we can swap the positions of jobs (2,4m) and
(1,4m+1) in S without this swap resulting in infeasibility.

Case 1: Assume that (1,3m+ j) is the last D j-job sched-
uled in S. As (2,3m+ j) is processed later than (1,3m+ j)
because of the EDD property of Lemma 2, we may move
job (2,3m+ j) to be the immediate successor of (1,3m+ j).
This results in all jobs at positions between (1,3m+ j) and
(2,3m + j) being shifted towards later completion times
by the processing time of (2,3m+ j). These shifted jobs,
however, must necessarily have a deadline of at least D j+1.
Hence, as S is feasible and (2,3m+ j) is a D j+1-job, the
modified schedule S′ that results from shifting the jobs does
not violate any deadline. In S′, we have a setup operation
between the predecessor of (1,3m+ j) in S and (1,3m+ j),
(2,3m+ j) and the successor of (1,3m+ j) in S, and a po-
tential setup between the predecessor and the successor of
(2,3m+ j) in S. Moreover, there is no setup between the
two jobs of family F3m+ j in S′. All remaining setup opera-
tions remain unchanged, so that the number of setups in S′

is not larger than in S.
Case 2: Assume that (1,3m+ j) is not the last D j-job

scheduled in S. Choose a D j-job j′ at a later position than
(1,3m+ j) in S. Assume that j′ is the last D j-job in S. If
(2,3m+ j) is scheduled on a later position than j′ in S, then
shift jobs (1,3m+ j) and (2,3m+ j), such that (1,3m+ j) is
scheduled immediately after job j′, directly followed by job
(2,3m+ j). In the resulting schedule S′, (1,3m+ j) will be
completed at the time when j′ was completed in S and by the
same arguments as in case 1 for (2,3m+ j), we can conclude
that S′ does not violate any deadline. In S′, we have a setup
operation before job (1,3m+ j) and after job (2,3m+ j),
as well as potential setup operations between the predeces-
sor and the successor of (1,3m+ j) (or at the start of the

schedule) and (2,3m+ j) in S. Moreover, there is no setup
between the two jobs of family F3m+ j in S′. All remaining
setup operations remain unchanged, so that the number of
setups in S′ is not larger than in S. If, on the other hand,
(2,3m+ j) is scheduled on a position somewhere between
(1,3m+ j) and j′, then shift (1,3m+ j) and (2,3m+ j) im-
mediately behind j′. As before, the resulting schedule S′

does not violate any deadline and the number of setups does
not increase. This concludes the proof of Property 2.

Because of Property 2, we may assume that S is such that
the jobs (1,3m+ j) and (2,3m+ j) are processed without an
intermediate setup operation for the remainder of this proof.
Then, we can make the following observation:
Property 3. Let S be constructed as described above and let
j ∈ {1, . . . ,m}. Then (1,3m + j) is the last D j-job that is
processed before C j.
Proof of Property 3. Assume the opposite. Then, by making
use of Property 1, we know that we must have

C j ≥ jmB+3m jZ +2 j(X +Y ).

In line with the derivations in the proof of Property 1, it is
easy to show that this necessarily results in C j > D j if

X >
1
2
(
m2−m

)
B,

and

Y ≥ 3
2
(
m2−m

)
Z,

Therefore, due to the choice of X and Y when generating
IB, at least one D j-job is late, which is a contradiction. This
proves the correctness of Property 3.

We will make use of another property that is based on
Property 1:
Property 4. Let j ∈ {1, . . . ,m} and let S be constructed
as described above. Then there must exist at least l j :=
∑

m
i= j 3(m + 1 − i) jobs that belong to families Ff , f ∈
{1, . . . ,3m}, and that have not been started to be processed
at time C j in S.
Proof of Property 4. First, note that every job that has been
started to be processed at time C j, must also be completed
at time C j. This is because preemption is not allowed and
the latter completion time must correspond to a time in-
stant at which the processing of a D j-job has just been com-
pleted. Now, assume to the contrary that there exist less than
∑

m
i= j 3(m+ 1− i) jobs of families Ff , f ∈ {1, . . . ,3m}, that

have not been started to be processed at time C j. Then, by
definition of 3-Partition and the construction of IB, we have

C j >3m(m+1)Z−
m

∑
i= j

3(m+1− i)Z +Z +(m+1)mB

−
m

∑
i= j

3(m+1− i)
B
2
+

B
2
+(2 j−1)(X +Y ).

(2)



6 D. Kress, M. Barketau, E. Pesch

To see this, note that each family Ff , f ∈ {1, . . . ,3m}, is
composed of exactly m+1 jobs. The processing time of each
of these jobs is a sum with two summands: Z and u f . The
first three terms of the right hand side of (2) therefore bound
C j from below by considering the difference of the total pro-
cessing time of the jobs in families Ff , f = 1, . . . ,3m, and
the processing time of the relevant jobs that have not been
completed at time C j, when only taking into account the first
summands of the processing times (i.e. Z for each job). Sim-
ilarly, the next three terms of the right hand side of (2) take
account of the remaining summands of the processing times
and make use of the fact that ∑

3m
i=1 ui = mB and ui <

B
2 for

all i = 1, . . . ,3m by definition of 3-Partition. Finally, the last
term of the right hand side of (2) applies Property 1 and
makes use of the fact that, for 2 ≤ j ≤ m (the case j = 1 is
similar), families F3m+( j−1) and F3m+ j contain a D j-job with
processing time X +Y .

It is easy to show that (2) necessarily results in C j > D j
if

Z >
1
4
(
m2 +3m−2m j+ j2−3 j

)
B

by some straightforward algebraic transformations. Addi-
tionally, note that g( j) :=−2m j+ j2−3 j is monotonically
decreasing in j for 1≤ j ≤ m+1. Hence, by choosing Z as
described in the above construction of IB, at least one D j-job
is late, which contradicts the feasibility of S and thus proves
the claim of Property 4.

We will furthermore need the following property that ex-
tends Property 4:
Property 5. Let j ∈ {1, . . . ,m} and let S be constructed as
described above. Then there exist at most l j jobs that be-
long to families Ff , f ∈ {1, . . . ,3m}, and that have not been
started to be processed at time C j in S.
Proof of Property 5. We will refer to a setup operation after
a job (i, f ), with i<m+1 and f ∈ {1, . . . ,3m} as a cut. Note
that, due to the fact that K = (7m+ 1)s, there may exist at
most 3m cuts in S.

We will prove Property 5 by mathematical induction.
Consider the base case j = m and recall that every job that
has been started to be processed at time Cm, must also be
completed at time Cm. Now, assume to the contrary of Prop-
erty 5 that there are lm+1= 4 (any larger number of jobs can
be proven in analogy) jobs of families Ff , f ∈ {1, . . . ,3m},
that have not been started to be processed at time Cm. Be-
cause of Properties 1–3, as well as the construction of IB
and S, we know that this requires four cuts. Now, step-
wise add the least possible amount of cuts in order to guar-
antee the values lm−1, . . . , l1 of Property 4. Obviously, we
need at least three additional cuts in order to guarantee
4+ 3 · 2 = 10 > lm−1 = 9 unprocessed jobs at time Cm−1.
If m = 2, this results in a total of at least 7 cuts and, thus,
is a contradiction. Now, note that because of the fact that
li−1− li = 3(m+2− i) for i > 1, the same reasoning, i.e. the

need for at least three additional cuts, applies when stepwise
considering all li with i < m− 1. Hence, we have a total of
at least 3m+ 1 cuts and, thus, a contradiction for any value
of m, which proves the base case.

Now, let 2 ≤ k ≤ m be such that j = m− (k− 1) and
assume that there are exactly (due to Property 4) li jobs
that belong to families Ff , f ∈ {1, . . . ,3m}, and that have
not been started to be processed at time Ci in S for all
i ∈ {m− k + 2, . . . ,m}. Because of Properties 1–3, as well
as the construction of IB and S, this requires a total of at
least 3(k− 1) cuts. We will proceed in analogy to the base
case. Assume to the contrary of Property 5, that there are
lm−(k−1)+ k jobs of families Ff , f ∈ {1, . . . ,3m}, that have
not been started to be processed at time C j. As above, this
requires at least four additional cuts. As in the base case,
when considering the remaining li with i < j− 1, the need
for at least three additional cuts for each i arises. Hence, we
have a total of at least 3(k−1)+4+3(m−k) = 3m+1 cuts
in S and, thus, a contradiction, which proves the inductive
step and the correctness of Property 5.

Finally, based on Properties 1–5, it is straightforward
to observe that we may assume that each family Ff , f =

3m+ 1, . . . ,4m, is processed in one batch in S, while each
family Ff , f = 1, . . . ,3m, is divided into exactly two batches,
so that |B3i−2| = |B3i−1| = |B3i| for all i ∈ {1, . . . ,m}, B f ={
( j, f )|1≤ j ≤

⌈
f
3

⌉}
, and A f := Ff \B f defines a batch of

S.
Now, denote the sum u3i−2 +u3i−1 +u3i by µi for all i ∈

{1, . . . ,m}. Then, by definition of 3-Partition, ∑
m
i=1 µi = mB.

Furthermore, based on the above deliberations, we have

C j =(2 j−1)(X+Y )+
m

∑
i=1

i(3Z+µi)+
j−1

∑
i=1

(m−i+1)(3Z+µi)

for all j ∈ {1, . . . ,m}. By additionally demanding C j ≤ D j
for all j ∈ {1, . . . ,m}, we derive

(m+1)
j−1

∑
i=1

µi +
m

∑
i= j

iµi ≤ (m+1)
j−1

∑
i=1

B+
m

∑
i= j

iB,

for all j ∈ {1, . . . ,m} as necessary conditions for feasibility
of S after some straightforward algebraic transformations.
By Lemma 1, we must therefore have µ1 = · · ·= µm = B, so
that we have established a solution to IP. This concludes the
proof. ut

3 Approximation Algorithm

We will now present an approximation algorithm for
1 |d j, f ,b = n,SCsi,b = s |T SC. It is based on some properties
of optimal solutions that are subject of Section 3.1. These
properties complement the results presented in Section 2.
Before describing and analyzing the algorithm in Section



Single-Machine Batch Scheduling 7

3.3, we will slightly modify the notation and present a math-
ematical model for 1 |d j, f ,b = n,SCsi,b = s |T SC in Section
3.2. This model will later be used in our computational tests.

3.1 Properties of Optimal Solutions

Consider an optimal job sequence with the EDD property
within families as presented in Lemma 2. Let (i, f ) and
(k, f ), f ∈ {1, . . . ,F}, with i < k be two jobs with iden-
tical deadline. Then we assume without loss of generality
that (i, f ) is scheduled before (k, f ) within the sequence.
Now, let ( j, f ) and ( j− 1, f ), f ∈ {1, . . . ,F}, be two jobs
of this sequence. Obviously, ( j, f ) completes no later than
d j, f . Thus, ( j− 1, f ) completes no later than d j, f − p j, f . If
d j−1, f > d j, f − p j, f , we modify the problem instance under
consideration by redefining d j−1, f = d j, f − p j, f . Note that,
after this modification, the optimal job sequence remains
feasible and that there are no additional feasible schedules.
Thus, the optimal number of batches does not change. By
repeating this procedure for a finite number of times, we ob-
tain a modified problem instance with the following prop-
erty:

d j, f −d j−1, f ≥ p j, f ∀ f ∈ {1, . . . ,F}, j ∈ {2, . . . ,n f }. (3)

The modified problem is equivalent to the initial problem in
the sense that the cost of an optimal schedule is identical in
both problems and every feasible schedule of the modified
problem is feasible for the initial problem. We will therefore
assume that (3) holds for any problem instance considered
in the remainder of this section.

Now, consider a general EDD-schedule, i.e. a job se-
quence with all jobs (in contrast to the jobs within each fam-
ily as used in Lemma 2) being processed in non-decreasing
order of their deadlines, which can obviously be determined
in O(n logn) time. Without loss of generality, we assume
that ties among jobs are broken in favor of the job with
the smaller family index or, if this index is identical, the
smaller job index. Hence, there is a unique EDD-schedule
for a given problem instance. We observe:

Lemma 3 Let I be an instance of 1 | d j, f ,b = n,SCsi,b =

s | T SC. There exists a feasible schedule for I if and only
if the EDD-schedule of I is feasible.

Proof The proof is in analogy to the proof of Lemma 2. ut

The EDD-schedule does, however, not in general pro-
vide a good approximation for the optimal schedule, as can
be seen in the following Lemma 4.

Lemma 4 An EDD-schedule for an instance of 1 |d j, f ,b =

n,SCsi,b = s |T SC can have n/2 times more batches than a
corresponding optimal schedule.

Proof Construct an instance I of 1 | d j, f ,b = n,SCsi,b =

s | T SC by defining two families (F = 2), each of which
contains the same number of jobs, i.e. n1 = n2 = n/2. Set
p j,1 = p j,2 = 2, d j,1 = n+ 2 j− 1, and d j,2 = n+ 2 j for all
j ∈ {1, . . . ,n/2}. It is easy to see, that the number of batches
in the EDD-schedule of I is n. However, because it is feasi-
ble to process all jobs of the first family before processing
the jobs of the second family, the optimal schedule has ex-
actly two batches. Thus, the EDD-schedule has n/2 times
more batches than the optimal schedule. ut

We will now turn our attention to group technology
schedules (GT-schedules). Here, one requires precisely F
setups in the schedule, so that each family must form ex-
actly one batch (see, for example, Baker and Trietsch, 2009).
A specific class of GT-schedules processes the families Ff ,
f = 1, . . . ,F , in non-decreasing order of the values d1, f +

Tf − p1, f , where Tf is defined to be the total processing time
of the jobs in family Ff , i.e. Tf := ∑

n f
j=1 p j, f . We assume that

ties among families are broken by favoring the family with
the smaller family index. The jobs within each batch are
processed in their EDD order with ties being broken as de-
scribed above. We refer to the resulting schedule of a given
problem instance as the GTD-schedule. Intuitively, the value
d1, f +Tf − p1, f , f ∈ {1, . . . ,F}, represents the largest pos-
sible completion time of the batch of family Ff in a feasible
GT -schedule.

The following lemma provides a feasibility criterion for
a GT-schedule.

Lemma 5 Let I be an instance of 1 | d j, f ,b = n,SCsi,b =

s |T SC. There exists a GT-schedule that is feasible (and thus
optimal) for I if and only if the GTD-schedule is feasible for
I.

Proof By definition, the GTD-schedule is a specific GT-
schedule. Hence, if the GTD-schedule is feasible for I, then
it defines a feasible GT-schedule for I. As this schedule has
the smallest possible number of batches, it must be optimal.

Now, let S be a feasible GT-schedule for I. By inter-
changing neighbored jobs within the batches of S, ensure
that the jobs within each batch are processed in their EDD
order, breaking ties as described above. Because of (3) and
because all jobs of the same family are processed contin-
uously and without idle times in S, all jobs of family Ff
are completed no later than their respective deadlines if and
only if (1, f ) is completed before or at its deadline for all
f ∈ {1, . . . ,F}. This is equivalent to the processing of all
families Ff , f ∈ {1, . . . ,F}, being completed no later than
d1, f +Tf − p1, f . Hence, we can easily construct the feasible
GTD-schedule by interchanging batches of S that are not se-
quenced in their GTD order, according to the tie breaking
rules stated above (see also Tanaev et al., 1994, 1998). ut



8 D. Kress, M. Barketau, E. Pesch

3.2 Notation and Model Formulation

For the sake of notational convenience, we will slightly
modify the notation for the remainder of this paper. Define
n0 := 0 and denote job ( j, f ), f ∈{1, . . . ,F}, j∈{1, . . . ,n f },
with the index n0 + · · ·+ n f−1 + j. Then a schedule of an
instance of 1 | d j, f ,b = n,SCsi,b = s | T SC corresponds to a
sequence of the elements of the job set {1, . . . ,n}. Further-
more, we define a parameter a j, f for all j ∈ {1, . . . ,n} and
all f ∈ {1, . . . ,F}. a j, f is set to one if job j belongs to fam-
ily f and to zero otherwise. Finally, the processing time and
the deadline of job j, j ∈ {1, . . . ,n}, are denoted by p j and
d j, respectively. The jobs are assumed to be ordered in non-
decreasing order of their respective deadlines with ties being
broken in favor of smaller job indices. Hence, the sequence
(1, . . . ,n) is an EDD-schedule of a given instance.

Based on the above notation, define the following vari-
ables:

x j,k :=


1, if job j is scheduled in k-th

position of the schedule
0, else

∀ j,k∈{1, . . . ,n},

and

yk :=


1, if the k-th job of the

schedule directly
precedes a setup

0, else

∀k ∈ {1, . . . ,n−1},

Then a mathematical model for 1 |d j, f ,b= n,SCsi,b = s |T SC
is as follows.

.min
x,y

n−1

∑
k=1

yk +1 (4)

.s.t. .
n

∑
k=1

x j,k = 1 . ∀ j ∈ {1, . . . ,n}, (5)

.
n

∑
j=1

x j,k = 1 . ∀k ∈ {1, . . . ,n}, (6)

.
k

∑
l=1

n

∑
j=1

p jx j,l

. ≤
n

∑
j=1

d jx j,k . ∀k ∈ {1, . . . ,n}, (7)

.yk ≥
n

∑
j=1

x j,ka j, f

. −
n

∑
j=1

x j,k+1a j, f . ∀k ∈ {1, . . . ,n−1},
. . f ∈ {1, . . . ,F}, (8)

.x j,k ∈ {0,1} . ∀ j,k ∈ {1, . . . ,n}, (9)

.yk ≥ 0 . ∀k ∈ {1, . . . ,n−1}. (10)

The objective function (4) minimizes the number of
batches, which is equivalent to minimizing the total schedul-
ing cost. Conditions (5) and (6) ensure that every job is part
of the solution sequence and that at most one job can be pro-
cessed at a time, respectively. Restrictions (7) guarantee that
each job completes no later than its deadline. Constraints
(8) enforce a setup operation between the processing of two
jobs of different families. Finally, conditions (9) and (10)
define the domains of the variables. Note that we need not
explicitly restrict the variables yk, k ∈ {1, . . . ,n− 1}, to be
binary because this is implicitly guaranteed by the objective
function (4) and restrictions (8).

3.3 Algorithm Description

Let I be an instance of 1 |d j, f ,b= n,SCsi,b = s |T SC. Further-
more, let i,k ∈ {1, . . . ,n}, i≤ k, and define a related instance
I′ by only considering jobs i, . . . ,k of I. The corresponding
processing times remain unchanged, while the deadlines are
set to their value in I minus the total processing time of jobs
1 to i− 1. We denote the resulting problem I′ as the (i,k)-
problem of I. It is clear that I has a feasible schedule if and
only if the (i,k)-problem has a feasible schedule for every i
and k with 1≤ i≤ k ≤ n. Moreover, we observe:

Lemma 6 Let I be an instance of 1 | d j, f ,b = n,SCsi,b =

s | T SC and consider any (i,k)-problem of I. If the GTD-
schedule for the (i,k)-problem is feasible, then the GTD-
schedule is feasible for every (l,k)-problem, where i< l ≤ k.

Proof It is easy to see that, in order to obtain the feasible
GTD-schedule for the (l,k)-problem, one must simply re-
move jobs i, . . . , l−1 from the GTD-schedule for the (i,k)-
problem. ut

We can now state our approximation algorithm for
1 |d j, f ,b = n,SCsi,b = s |T SC.

Algorithm 1 returns a schedule σ0. If there exists no fea-
sible schedule, the algorithm returns σ0 := /0. Our main re-
sult regarding the algorithm is as follows.

Theorem 2 Let I be an instance of 1 | d j, f ,b = n,SCsi,b =

s |T SC. Algorithm 1 checks if there exists a feasible schedule
for I. If a feasible schedule exists, it determines a schedule
that approximates the cost of an optimal schedule by a factor
of F.

Proof In Step 1, Algorithm 1 checks whether the GTD-
schedule of the input instance I is feasible. If this is the case,
then this schedule is also optimal for I (Lemma 5) and the
algorithm terminates by returning this schedule. Similarly,
in Step 2, the algorithm makes use of Lemma 3 to check if I
has a feasible solution. If the input instance is infeasible, the
algorithm returns an empty schedule.



Single-Machine Batch Scheduling 9

Algorithm 1 Approximation algorithm

0. Initialization: Set k := n, σ := /0, and σ0 := /0.

1. GTD-schedule: Determine the GTD-schedule σGT D of the input
instance. If σGT D is feasible, then it is also optimal (see Lemma
5). In this case, set σ0 = σGT D and stop.

2. EDD-schedule: Determine the EDD-schedule σEDD of the input
instance. If σEDD is infeasible, then there exists no feasible sched-
ule (see Lemma 3). In this case, stop.

3. Stop criterion: If k ≤ F , set σmax := (1, . . . ,k), σ0 := (σmax,σ)
and stop. Else, set i := k−F and σmax := (i+1, . . . ,k).

4. (i,k)-problem: Determine the GTD-schedule σGT D for the
(i,k)-problem.

Case 1, σGT D is feasible: Set σmax := σGT D. If i = 1, set σ0 :=
(σmax,σ) and stop. Else, if i > 1, set i := i− 1 and repeat
Step 4.

Case 2, σGT D is infeasible: Set σ := (σmax,σ), k := i, and goto
Step 3.

For the remainder of the proof, we will assume that the
input instance I is such that Step 3 is executed, i.e. such
that the GTD-schedule is infeasible (Step 1) while the EDD-
schedule is feasible (Step 2).

In Steps 3 and 4, Algorithm 1 considers the jobs in their
reverse EDD order to construct a schedule σ0 by succes-
sively inserting non-empty job sequences σmax at the be-
ginning of a partial schedule σ . These steps can be inter-
preted as iterations of the algorithm, where each iteration
ends with such an insertion operation. Denote the total num-
ber of these iterations by m. Then, obviously, m ≤ n. Fur-
thermore, in order to ease the notation, denote the sequence
of jobs added in iteration i, i ∈ {1, . . . ,m}, by σmax

i and the
index of the first job considered in this iteration by li. De-
fine lm+1 := 0. Then, lm+1 < lm < · · · < l2 < l1 = n and
σ0 = (σmax

m ,σmax
m−1, . . . ,σ

max
1 ), where σmax

i , i ∈ {1, . . . ,m}, is
a feasible schedule for the (li+1+1, li)-problem by construc-
tion of Steps 3 and 4 of Algorithm 1. Hence, σ0 is feasible
for I.

Note that the sequence σmax
i , i ∈ {1, . . . ,m}, has at most

F batches, because it either has at most F jobs (Step 3) or it
is a GTD-schedule (Step 4). Therefore, σ0 has at most mF
batches.

By Lemma 2, there exists an optimal schedule σopt for
I with the jobs of each family being processed in their EDD
order. It is easy to see that σopt can be modified such that
all jobs of a specific family that share the same deadline
are processed in exactly one batch in the order of their in-
dices (smaller index first) and such that the resulting sched-
ule is optimal. The argumentation is in analogy to the proof
of Lemma 2. When referring to σopt in the remainder of
this proof, we assume that this modification has been imple-
mented.

Define σ0
i := (σmax

i ,σmax
i−1 , . . . ,σ

max
1 ), i = 1, . . . ,m, and

let f (i) be the number of batches of σopt that exclusively

contain jobs that are also included in σ0
i . Define f (0) :=

0. In the remainder of the proof we will show that f (m) >

f (m− 1) > · · · > f (1) > f (0), so that σopt has at least m
batches. This will prove the claim of the theorem.

Because sequence σ0
m = σ0 contains all n jobs, f (m)

is equal to the number of batches in σopt . Furthermore,
f (m) > f (m− 1), because at least one batch of σopt must
contain a job of sequence σmax

m , which is not part of σ0
m−1.

Additionally, note that an insertion of a sequence into σ0 in
Step 3 can only take place in iteration m, so that we must
solely consider Step 4 of Algorithm 1 in the remainder of
the proof.

Now, consider iteration i, 1 ≤ i ≤ m− 1, of Algorithm
1. Construct a feasible schedule σ

opt
i for the (1, li)-problem

by modification of σopt as follows. If i > 1, remove all jobs
that are included in σ0

i−1 from σopt . The relative order of the
remaining jobs 1, . . . , li remains unchanged. Note that the
modification is such that f (i) > f (i− 1) if the jobs of se-
quence σmax

i constitute at least one complete batch of σ
opt
i .

Let p be the largest index, such that job p is the first job
of a batch in σ

opt
i . We will make use of two properties:

1. All jobs of the batch that starts with job p in σ
opt
i are

included in the job set {p, p+1, . . . , li}. This is immedi-
ately implied by the fact that the jobs of each family are
processed in non-decreasing order of their deadlines in
σ

opt
i and the above assumptions regarding σopt .

2. Among all batches in σ
opt
i that include jobs of the set

{p, p+ 1, . . . , li}, there exists at most one batch of each
family. This can be seen by assuming to the contrary
that σ

opt
i contains at least two of these batches of the

same family. Because of the above assumptions regard-
ing σopt , the jobs of these batches are processed in in-
creasing order of their indices. Hence, the second batch
must start with job j ≥ p + 1, which contradicts the
method of choice of index p.

Because d1 ≤ ·· · ≤ dp ≤ ·· · ≤ dli , we can transform σ
opt
i

into a feasible schedule σ̂
opt
i for the (1, li)-problem by shift-

ing jobs p, p + 1, . . . , li to the end of σ
opt
i without chang-

ing their relative order. According to the second of the
above properties, the resulting final sequence of the jobs
p, p + 1, . . . , li within σ̂

opt
i is a feasible GT-schedule for

the (p, li)-problem. Then, because of Lemma 5, the GTD-
schedule for the (p, li)-problem is feasible. It follows fur-
ther from Lemma 6, that the GTD-schedule is feasible for
every (k, li)-problem, with p ≤ k ≤ li. Thus, in iteration i
of Algorithm 1, Step 4 will be repeated until all jobs of the
set {p, p+1, . . . , li} are included in the sequence σmax

i . Ac-
cording to the first of the above properties, all jobs of the
batch that starts with job p in σ

opt
i are included in the job set

{p, p+ 1, . . . , li}. Thus, f (m) > f (m− 1) > · · · > f (0) and
the statement of the theorem is true. ut



10 D. Kress, M. Barketau, E. Pesch

We close this section with analyzing the time com-
plexity of Algorithm 1 by making use of the notation de-
fined in the proof of Theorem 2. In Step 1, the algorithm
needs O(n+ F logF) time to construct the GTD-schedule
and check its feasibility. Similarly, constructing and check-
ing the feasibility of the EDD-schedule in Step 2 requires
O(n logn) time. Now, consider iteration i, 1≤ i≤ m, of Al-
gorithm 1, where the algorithm analyzes (k, li)-problems,
k = r,r− 1, . . . ,max{li+1,1}, with r = max{li−F,1}. For
each of these problems, the GTD-schedule is checked for
feasibility, which can be done in O(F) time if the corre-
sponding values d1, f + Tf − p1, f are stored in a sorted list
for all families. Updating this list requires O(F) time when
considering a new job within the algorithm. Thus, Iteration
i, 1≤ i≤m, needs O((max{li−F,1}−max{li+1,1}+1)F)

time. Therefore, all iterations of Algorithm 1 will require
O(F ∑

m
i=1(max{li−F,1}−max{li+1,1}+1) =O(nF) time.

The running time of Algorithm 1 therefore sums up to
O(n logn+nF).

4 Computational Experiments

We ran computational tests to analyze the effectiveness of
Algorithm 1. These tests were performed on a computer
with 16GB of RAM and an Intel Core i7-4770 CPU, running
at 3.4GHz under Windows 8, 64bit. The algorithm was im-
plemented in C++ (Microsoft Visual Studio 2010). We addi-
tionally used IBM ILOG CPLEX in version 12.5 with 64bit
to solve model (4)–(10).

Our testbed is composed of 10 groups of instances. For
each group, the number of families of the corresponding in-
stances is fixed, F = 5,10,15, . . . ,50. Each group features
20 randomly generated instances. The number of jobs in
family Ff , f ∈ {1, . . . ,F}, is set to n f = 2 + b f/2c. Inte-
ger job processing times p j, j = 1, . . . ,n, were drawn from
a uniform distribution over the interval [1,100]. Similarly,
integer deadlines d j, j = 1, . . . ,n, were drawn from uniform
distributions over [∑ j

k=1 pk,∑
j
k=1 pk +10n]. Hence, each in-

stance is feasible. Furthermore, the deadlines are such that
it is unlikely that the GTD-schedule of an instance is fea-
sible. Indeed, our testbed contains no instance with a feasi-
ble GTD-schedule. The jobs were randomly assigned to the
families.

Table 2 presents the computational results on the quality
of the solutions determined by Algorithm 1. For each set of
instances, it presents the percentage of instances for which
CPLEX returned a feasible solution after a time limit of 2
hours (third column) and the corresponding percentage of
instances that CPLEX was able to solve to optimality (fourth
column). Furthermore, in order to asses the solution quality
of Algorithm 1, the table includes results for three ratios in
columns five to seven. Each cell presents the average value

Table 2 Computational results - solution quality

Inst. set CPLEX Algorithm 1

F n sol [%] opt [%] qualF qualopt qualsol

5 16 100 100 2.26 (3) 1.47 (1.86) 1.47 (1.86)
10 45 100 0 2.67 (3.4) - 1.12 (1.68)
15 86 100 0 3.09 (3.47) - 0.97 (1.12)
20 140 100 0 3.31 (3.7) - 0.5 (0.56)
25 206 80 0 3.5 (4) - 0.44 (0.48)
30 285 15 0 3.86 (4.3) - 0.41 (0.44)
35 376 0 0 4.01 (4.34) - -
40 480 0 0 4.24 (4.63) - -
45 596 0 0 4.42 (4.98) - -
50 725 0 0 4.66 (5.34) - -

Table 3 Computational results - runtime in milliseconds

F 5 10 15 20 25 30 35 40 45 50

tavg 0.01 0.03 0.08 0.19 0.38 0.73 1.2 4.98 30.65 32.61
tmax 0.01 0.07 0.14 0.26 0.48 1.16 1.46 16.32 101.01 56.55

as well as the maximum value (in parentheses) of these ra-
tios over all relevant instances of a set. qualF is defined as
the objective function value of a solution determined by the
approximation algorithm divided by the number of families
F , the latter number being a lower bound on the number of
batches in an optimal solution. Similarly, the denominator
of qualopt (qualsol) corresponds the optimal (best) objective
function value determined by CPLEX (within the time limit
of two hours). The average and maximum values in the last
two columns of the table solely relate to the instances for
which optimal or feasible solutions have been determined,
respectively.

The results of Table 2 indicate that Algorithm 1, on av-
erage, results in significantly better solutions than indicated
by Theorem 2. Furthermore, it clearly outperforms CPLEX
for problem instances of realistic size.

Table 3 complements the above results by presenting the
average (tavg) and maximum (tmax) computational times of
Algorithm 1 for each set of instances in milliseconds. It
shows that Algorithm 1 terminates after only a few millisec-
onds, even for the large instances of our testbed.

5 Summary

In this article we have addresses the single-machine batch
scheduling problem with the objective of minimizing the
total setup cost. We have presented a proof for the prob-
lem’s strong NP-hardness and introduced an approximation
algorithm that approximates the cost of an optimal schedule
by a factor of F , where F denotes the number of families.
Computational tests on randomly generated instances have
shown that the algorithm, on average, results in significantly
better solutions than indicated by this relative performance



Single-Machine Batch Scheduling 11

guarantee. Furthermore, the runtimes of the algorithm are in
the range of only a few milliseconds for small to medium
sized instances.

Acknowledgements Maksim Barketau is partially supported by the
Φ10ΦΠ − 001 project of the Belorussian Fund of Fundamental Re-
search.

References

Allahverdi A (2015) The third comprehensive survey on scheduling
problems with setup times/costs. European Journal of Operational
Research 246(2):345–378

Allahverdi A, Gupta JND, Aldowaisan T (1999) A review of schedul-
ing research involving setup considerations. Omega 27(2):219–239

Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of
scheduling problems with setup times or costs. European Journal of
Operational Research 187(3):985–1032

Baker KR, Trietsch D (2009) Principles of Sequencing and Scheduling.
Wiley, Hoboken, New Jersey

Błażewicz J, Ecker KH, Pesch E, Schmidt G, Węglarz J (2007) Hand-
book on Scheduling: From Theory to Applications. Springer, Berlin

Bruno J, Downey P (1978) Complexity of task sequencing with dead-
lines, set-up times and changeover costs. SIAM Journal on Comput-
ing 7(4):393–404

Cheng TCE, Ng CT, Yuan JJ (2003) The single machine batching
problem with family setup times to minimize maximum lateness is
strongly NP-hard. Journal of Scheduling 6(5):483–490

Garey MR, Johnson DS (1979) Computers and Intractability - A Guide
to the Theory of NP-Completeness. Freeman, New York

Gerodimos AE, Glass CA, Potts CN, Tautenhahn T (1999) Schedul-
ing multi-operation jobs on a single machine. Annals of Operations
Research 92:87–105

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979)
Optimization and approximation in deterministic sequencing and
scheduling: a survey. Annals of Discrete Mathematics 5:287–326

Herrmann JW, Lee CY (1995) Solving a class scheduling problem with
a genetic algorithm. ORSA Journal on Computing 7(4):443–452

Lu LF, Yuan JJ (2007) The single machine batching problem with iden-
tical family setup times to minimize maximum lateness is strongly
NP-hard. European Journal of Operational Research 177(2):1302–
1309

Mehta SV, Uzsoy R (1998) Minimizing total tardiness on a batch pro-
cessing machine with incompatible job families. IIE Transactions
30(2):165–178

Monma CL, Potts CN (1989) On the complexity of scheduling with
batch setup times. Operations Research 37(5):798–804

Potts CN, Kovalyov MY (2000) Scheduling with batching: a review.
European Journal of Operational Research 120(2):228–249

Tanaev VS, Gordon VS, Shafransky Y (1994) Scheduling Theory.
Single-Stage Systems. Springer-Science & Business Media, B.V.,
Dordrecht

Tanaev VS, Kovalyov MY, Shafransky YM (1998) Scheduling Theory.
Group Technologies. Institute of Engineering Cybernetics, National
Academy of Sciences of Belarus, Minsk, (in Russian)


