
The Partitioning Min-Max Weighted Matching Problem†

Dominik Kress, Sebastian Meiswinkel∗, Erwin Pesch

Department of Management Information Science, University of Siegen, Kohlbettstr. 15, D-57068
Siegen, Germany

Abstract

We introduce and analyze the Partitioning Min-Max Weighted Matching (PMMWM)

Problem. PMMWM combines the problem of partitioning a set of vertices of a bipar-

tite graph into disjoint subsets of restricted size and the strongly NP-hard Min-Max

Weighted Matching (MMWM) Problem, that has recently been introduced in the lit-

erature. In contrast to PMMWM, the latter problem assumes the partitioning to be

given. Applications arise in the field of intermodal container terminals and sea ports.

We propose a MILP formulation for PMMWM and prove that the problem is NP-hard

in the strong sense. Two heuristic frameworks are presented. Both of them outper-

form standard optimization software. Our extensive computational study proves that

the algorithms provide high quality solutions within reasonable time.

Keywords: Assignment, Partitioning, Maximum Matching, Bipartite Graph,

Container Transshipment

1. Introduction

In this paper we consider a variant of the strongly NP-hard Min-Max Weighted

Matching (MMWM) Problem, that has recently been introduced by Barketau et al.

(2015). An instance of MMWM is defined by an edge-weighted bipartite graphG(U, V,E)

with disjoint vertex sets U and V (bipartitions), edge set E, and a partitioning of U

into disjoint subsets (components). Given a maximum matching on G, the weight of a

component is defined as the sum of the weights of the edges of the matching that are

incident to the vertices of the component. The objective is to find a maximum matching

that minimizes the maximum weight of the components. The components may, for

∗Corresponding author, phone: +49 271 740 4597, fax: +49 271 740 2940
Email addresses: dominik.kress@uni-siegen.de (Dominik Kress),

sebastian.meiswinkel@uni-siegen.de (Sebastian Meiswinkel), erwin.pesch@uni-siegen.de
(Erwin Pesch)

† This is an Accepted Manuscript of an article published by Elsevier in the European Journal of
Operational Research, available online: https://doi.org/10.1016/j.ejor.2015.06.041
c© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://

creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.ejor.2015.06.041
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

example, correspond to areas of responsibility of managers or tasks to be performed by

a worker or machine. The objective is to balance the workload, risk, etc. over these

components.

While Barketau et al. (2015) assume the components to be fixed, we relax this as-

sumption by assuming the partitioning decision to be part of the optimization, with

only the desired number of components being fixed. We refer to this problem as the

Partitioning Min-Max Weighted Matching (PMMWM) Problem. Figure 1 il-

lustrates an exemplary solution to an example instance of PMMWM. The maximum

matching is represented by bold edges. Edge weights are solely depicted for the edges of

the matching. Bipartition U = {u1, ..., u7} has been partitioned into the components U1,

U2 and U3 with weights 6, 9 and 4. Hence, the corresponding objective function value of

the PMMWM instance is max{6, 9, 4} = 9. If we move u4 to U3 without changing the

matching, the objective function value reduces by 1.

u1

u2

u3

u4

u5

u6

u7

v1

v2

v3

v4

v5

v6

v7

v8

U1

U2

U3

5

1

4

2

1

4

2

Figure 1: A solution to an example instance of PMMWM.

This paper is organized as follows. In Section 2 we provide a detailed problem

description along with a MILP model of the problem. We present two applications

of PMMWM in the context of a reach stacker based container terminal and a rail-road

terminal. Next, a proof of the problem’s strong NP-hardness is given in Section 3. Section

4 introduces two heuristic frameworks that are being analyzed based on computational

tests in Section 5. In Section 6, we summarize the findings of this paper.

2. Detailed Problem Definition and Applications

Let G(U, V,E) be a weighted bipartite graph with bipartitions U and V and edge set

E. The elements of U and V are indexed i = 1, . . . , n1 and j = 1, . . . , n2, respectively.

2

Assume n1 ≤ n2. A weight c(e) = cuv ∈ Q+
0 is associated with each edge e = (u, v) ∈ E

of G. Define a matching as a set M ⊆ E of pairwise nonadjacent edges and a maximum

matching as a matching having the largest possible size |M | amongst all matchings on G.

Throughout the paper, we will assume that, for any given bipartite graph, there exists a

maximum matching Π with |Π| = n1. As in Barketau et al. (2015), given a partitioning of

U into m disjoint subsets, U1, U2, . . . , Um, the value of a maximum matching Π is defined

to be w(Π) := maxk∈{1,...,m}{
∑

u∈Uk,(u,v)∈Π cuv} (refer to Figure 1 for an illustration).

Then PMMWM can formally be defined as follows: Find a partitioning of the vertex set

U into m (potentially empty) disjoint subsets, U1, U2, . . . , Um, with at most ū elements

in each subset, and a maximum matching Π on G, such that the value of Π is minimum

amongst all maximum matchings over all possible partitionings of U .

We define the following binary variables:

xij :=

1 if (i, j) ∈ Π,

0 else,

∀ (i, j) ∈ E (1)

and

yik :=

1 if i ∈ Uk,

0 else,

∀ i ∈ U, k ∈ {1, . . . ,m}. (2)

Then a nonlinear mathematical model for PMMWM is as follows:

.min
x,y

. max
k∈{1,...,m}

{∑
i∈U

∑
j∈V

cijyikxij

}
(3)

. s.t. .
∑
j∈V

xij = 1 .∀ i ∈ U, (4)

.
∑
i∈U

xij ≤ 1 .∀ j ∈ V, (5)

.

m∑
k=1

yik = 1 .∀ i ∈ U, (6)

.
∑
i∈U

yik ≤ ū .∀ k ∈ {1, . . . ,m}, (7)

.xij ∈ {0, 1} .∀ (i, j) ∈ E, (8)

.yik ∈ {0, 1} .∀ i ∈ U, k ∈ {1, . . . ,m}. (9)

The objective function (3) minimizes the value of the maximum matching over all possible

3

partitionings and all maximum matchings. Constraints (4)–(5) are well known maximum

matching constraints (recall that n1 ≤ n2). Constraints (6) enforce every vertex u ∈ U

to be an element of exactly one partition Uk, k ∈ 1, . . . ,m. Constraints (7) restrict the

number of vertices in each partition to be at most ū. The domains of the variables are

defined by (8)–(9).

A specific application of PMMWM arises at small to medium sized sea ports where

containers are handled by reach stackers. The corresponding terminals, as schematically

represented in Figure 2, can include large long-term storage areas and additional tem-

vessel

quay crane

reach stacker

temporary storage area

long-term storage area

Figure 2: Potential schematic layout of a reach stacker based terminal.

porary storage areas (or marshaling-areas; see, for instance, Kozan & Preston, 1999;

Preston & Kozan, 2001). The latter areas aim at improving the performance of the

terminals by inducing short turnaround times of vessels when distances to long-term

storage areas are relatively large. When a vessel arrives at a berth at the terminal, con-

tainers are unloaded by quay cranes and then stored in a temporary storage area that is

located next to the berth. Containers that leave the terminal by ship are moved to the

temporary storage area using reach stackers during previous idle times. We will assume

that these vehicles are “fast” if they are unloaded and “slow” if they are loaded and can

thus restrict ourselves to considering the movements of loaded vehicles only. This is a

common assumption when considering container movements (see, for instance, Boysen

4

& Fliedner, 2010) and is supported by the fact, that “reach stackers [in comparison to

straddle carriers] are less stable in the forward direction as the machines will fall forward

when breaking in an emergency, particularly if the load is carried high for visibility rea-

sons” (Isoloader, 2012). Then an application of PMMWM arises, when considering the

process of emptying or refilling the temporary storage area during idle times. We are

faced with the problem of assigning each container in the temporary storage area to an

empty slot in the long-term storage area (or vice versa) and assigning the corresponding

container movements to a limited number of available vehicles. Consider, for example,

the case of filling the temporary storage area with containers of the long-term storage

area. The vertex set U corresponds to the set of containers that have to be moved.

Bipartition V relates to the set of empty slots in the temporary storage area. The edge

weights cuv include multiple effects. First, they obviously result from the distances be-

tween container locations and their potential temporary storage slots. Additionally, the

weights include a (potentially container dependent) amount of time needed to lift and

drop a container by a reach stacker. Furthermore, it is possible to represent different

velocities of loaded vehicles, for example depending on the movement of heavy, sensitive,

or empty containers. The parameter m represents the number of available reach stackers.

ū represents an upper bound on the maximum number of containers that a reach-stacker

may process. A solution is on one hand composed of an assignment of each container to

an empty storage slot, i.e. a maximum matching, and on the other hand of an assignment

of container movements to the available vehicles, i.e. a partitioning of U into at most m

components. Naturally, the objective is to perform all movements as fast as possible by

balancing the workload over the available reach stackers.

Applications of PMMWM may also arise when considering container transshipment

in rail-road terminals (cf. Boysen et al., 2013, for a survey) and can thus be motivated

in analogy to Barketau et al. (2015), who point out that an “interesting direction of [...]

research is the case when the components are not fixed and the decision on their sizes is

a part of the problem.” A schematic representation of a classical layout of such termi-

nals is given in Figure 3 (Boysen & Fliedner, 2010; Boysen et al., 2013). The terminal

consists of a given number of parallel railway tracks, a container storage area (inter-

mediate storage) including a fully automated sorting system, and truck lanes. Each of

these areas is subdivided into segments, usually referred to as slots, that are adjusted to

the length of a standardized railcar. Multiple gantry cranes, spanning over these areas,

5

container storage

truck lanes

freight trains

gantry crane gantry crane

and sorter

Figure 3: Rail-road terminal (Boysen & Fliedner, 2010).

transfer containers between trucks and railcars. In mathematical models, workloads of

the cranes are typically approximated by only considering laden movements. Trains are

usually served in bundles. A bundle leaves the terminal after all corresponding trans-

shipment operations have been performed. In a classical setting, the gantry cranes may

not cross each other. However, one can easily think of a potential (not yet existent)

layout of rail-road terminals with gantry cranes being able to pass one another, as such

systems can, for example, frequently be found at sea terminals (Kemme, 2012). To ex-

tract the most basic problem setting, we assume that these cranes are always able to

pass one another (as opposed to modelling more complicated passing rules). In such a

case, an application of PMMWM is straight forward: Given a set U of containers to

be transferred to potential target slots V by m gantry cranes, one has to find a specific

assignment of containers to slots, i.e. a maximum matching, and a partitioning of U into

m components representing the container movements to be performed by the different

cranes, such that the workload of the cranes is “balanced”. Obviously, the edge weights

of the corresponding bipartite graph represent workloads of laden movements. Let us

now consider the classical layout of rail-road terminals, i.e. the case of the gantry cranes

not being able to pass one another. One way of handling the non-passing restrictions is

to horizontally subdivide the terminal into crane areas, each being exclusively processed

by one of the gantry cranes. Any container transport between the areas is performed

using the sorter. The planning process at such rail-road terminals can then be thought

of as a sequential process. Two subsequent decisions in this process are concerned with

the formation of crane areas followed by the assignment of containers to target slots,

where a container stored in a specific crane area has to be operated by the area-specific

6

crane to perform the movement of the container to its assigned target slot. When adding

additional restrictions, PMMWM integrates these decisions, with containers U having

to be partitioned into m (number of gantry cranes) components (i.e. crane areas), and

target slots V having to be assigned to the containers (maximum matching). Again, the

edge weights of the corresponding bipartite graph represent the cost of laden movements

and we aim for the workloads of the cranes being “as similar as possible” (minimax ob-

jective of PMMWM). However, additional restrictions will, for example, need to enforce

elements of partitions to be “neighbored” (i.e. crane areas to be connected). Addition-

ally, appropriate penalty costs will have to account for transferring containers between

crane areas using the sorter.

We close this section by noting that model (3)–(9) can easily be linearized by intro-

ducing additional variables zijk ≥ 0 for all i ∈ U , j ∈ V and k ∈ {1, . . . ,m}:

.min
x,y

.c (10)

. s.t. .constraints (4)–(9),.

.c ≥
∑
i∈U

∑
j∈V

cijzijk . ∀ k ∈ {1, . . . ,m}, (11)

.zijk ≥ yik + xij − 1 . ∀ i ∈ U, j ∈ V, k ∈ {1, . . . ,m}, (12)

.zijk ≥ 0 . ∀ i ∈ U, j ∈ V, k ∈ {1, . . . ,m}. (13)

3. Computational Complexity

It is easy to see that if we fix m to one in PMMWM, i.e. if we consider the case

of having exactly one component, we are left with the well-known problem of finding a

maximum matching of minimum weight in a bipartite graph, which is equivalent to the

Linear Assignment Problem and can thus be solved in polynomial time (see Section

4). The special case of PMMWM where the number of components m is equal to |U | is

known as the Linear Bottleneck Assignment Problem (cf. Burkard et al., 2009, and

the references therein). It is polynomially solvable as well. In particular, it can be solved

by the threshold method in O(n2
√
n/ log n) time. The Weighted Edge Dominating

Set Problem is similar to PMMWM with one component but for arbitrary graphs. It

is NP-hard and admits a 2-approximation.

Now note that PMMWM is not a straight forward generalization of MMWM in the

7

sense that, given an instance I of MMWM, we need only “copy” the corresponding bi-

partite graph, fix a set of PMMWM parameters to specific values, and solve the resulting

PMMWM instance to receive an optimal solution to I. More generally, it is not trivial

to construct an instance of PMMWM that (when solved to optimality) is guaranteed to

result in the partitioning given in I and thus to provide an optimal solution to I. Thus,

MMWM is not simply a subproblem of PMMWM. In MMWM the components of U are

fixed and are not necessarily equal in size while PMMWM only imposes an upper bound

on the size of the components. Moreover, the fact that the number and the elements of

the (non empty) components of U are a result of the optimization consequently leads to a

higher flexibility and a larger search space that does not necessarily contain all solutions

of MMWM (even if m is chosen appropriately), unless ū is sufficiently large. Thus we

cannot simply conclude that PMMWM is NP-hard from the NP-hardness of MMWM.

A formal proof of strong NP-hardness of PMMWM, which we will now provide,

is more naturally based on a reduction of a classical partitioning problem than on a

matching problem.

We will consider the decision problem related to PMMWM:

Definition 3.1 (PMMWM-D). Given a weighted bipartite graph as defined in Section

2. Does there exist a partitioning of the vertex set U into m (potentially empty) dis-

joint subsets, U1, U2, . . . , Um, with at most ū elements in each subset, and a maximum

matching Π on G, such that the value of Π is no larger than a given ω ∈ Q+?

The proof is based on a reduction of the strongly NP-complete 3-Partition Problem

(see Garey & Johnson, 1979):

Definition 3.2 (3-Partition). Given a set A of 3k elements, a bound B ∈ Z+, and

sizes s(a) ∈ Z+ for all a ∈ A such that B/4 < s(a) < B/2 and such that
∑

a∈A s(a) = kB.

Is there a partitioning of A into k disjoint subsets A1, . . . , Ak such that, for 1 ≤ i ≤ k,∑
a∈Ai

s(a) = B?

Theorem 3.1. PMMWM-D is NP-complete in the strong sense.

Proof. Obviously PMMWM-D ∈ NP because for any partitioning and maximum match-

ing it can be checked in polynomial time if the corresponding value is no larger than

ω.

8

Now consider an arbitrary instance I of 3-Partition and construct a complete

bipartite graph G as an instance J of PMMWM-D with U = A and vertex set V such

that |V | = |U |. Furthermore, for each u ∈ U , define the weights of all edges incident to u

in G to be equal to the corresponding element’s size s(a), a ∈ A. Set m = k, ū = 3, and

ω = B. Now note that, given an arbitrary partitioning U1, . . . , Um of U , every maximum

matching has the same value. We are left with the task of showing that there exists a

partitioning U1, . . . , Um of U and a maximum matching Π with a value of no more than

ω if and only if the answer to I is yes (we will say that I “has a solution” if its answer

is yes and call a corresponding partitioning of A a “solution”).

Suppose we are given a solution A1, . . . , Ak to I. Construct a partitioning U1, . . . , Um

of U such that subset Ui contains all vertices that correspond to elements of Ai for all

i = 1, . . . ,m, and consider any maximum matching on G. It is immediately implied that

the value is ω.

Suppose we are given a partitioning U1, . . . , Um of U and a maximum matching Π such

that its value is no more than ω. As ū = 3 and |U | = 3m, we necessarily have |Ui| = 3

for all i = 1, . . . ,m. Now note that, as the sum of the edge weights of any maximum

matching on G equals mω and the value of Π is at most ω, we have
∑

u∈Ui,(u,v)∈Π cuv = ω

for all i = 1, . . . ,m. Hence, the subsets of A that correspond to the given partitioning

of U establish a solution to I.

We conclude:

Corollary 3.1. PMMWM is NP-hard in the strong sense.

4. Algorithms

PMMWM can be considered as a combination of a matching and a partitioning

problem. Hence, a natural way of constructing heuristics for PMMWM is to decompose

the problem into its matching and partitioning components, solve the resulting problems

separately (either exact or heuristically), and combine the resulting solutions to a solution

of PMMWM. Obviously, we can construct different heuristics by changing the order of

solving the separate stages.

Partition-Match heuristics assume that there is a vertex weight associated with each

element of vertex set U and, in the first stage, partition U into no more than m com-

ponents with at most ū elements in each component, such that the maximum weight of

9

the components is as small as possible. Here, the weight of a component is defined as

the sum of the weights of the vertices of the component. When considering the objective

of minimizing the maximum weight of the components, we refer to this problem as the

Restriced Partitioning (RP) Problem.

We note:

Theorem 4.1. RP is NP-hard in the strong sense.

As the proof of Theorem 4.1 is in analogy to the proof of Theorem 3.1 and Corollary

3.1, we will not present it in detail for the sake of brevity.

In the next stage of a Partition-Match heuristic, we drop the weights of the vertices.

Given the components resulting from the first stage, we now need to determine a maxi-

mum matching of small value. Hence, we are faced with an instance of MMWM. Solving

this problem results in a maximum matching, that we may use for restarting the overall

procedure by solving RP with each vertex weight being equal to the weight of the edge

of the maximum matching that is incident to the very vertex. Figure 4 illustrates the

idea of Partition-Match heuristics.

PMMWM
instance

Genrate or
modify vertex

weights

Restriced
Partitioning Problem

Min-Max Weighted
Matching Problem

Stop?
PMMWM
solution

Generate/Modify Partition Match

yes

no

Figure 4: Partition-Match heuristics.

Match-Partition heuristics (see Figure 5) first consider the classical problem of find-

ing a maximum matching of minimum weight, i.e. minimum sum of the weights of all

edges of the matching, which we refer to as the Min-Sum Weighted Matching

(MSWM) Problem. MSWM can be solved in polynomial time, for example in O(n3)

(where n := max{n1, n2}) by applying the well known Hungarian algorithm (cf. Burkard

et al., 2009; Kuhn, 1955). Hereafter, we proceed in analogy to our approach in Partition-

Match heuristics, i.e. by defining vertex weights based on the maximum matching and

solving RP. Finally, we modify the edge weights of the bipartite graph to restart the

procedure by solving MSWM on the modified graph.

We will present details on the algorithms in the next subsections. Subsection 4.1 is

concerned with solving RP. Heuristics for solving MMWM are presented in Subsection

10

PMMWM
instance

Min-Sum Weighted
Matching Problem

Generate or
modify vertex

weights

Modify edge
weights

Restriced
Partitioning Problem

Stop?
PMMWM
solution

Match Generate/Modify Partition

yes

no

Figure 5: Match-Partition heuristics.

4.2. Hereafter, we will present details of Partition-Match and Match-Partition heuristics

in Subsections 4.3 and 4.4.

4.1. Solving the Restricted Partitioning Problem

As stated in Theorem 4.1, RP is NP-hard in the strong sense. We therefore apply a

heuristic algorithm when facing an instance of RP in Partition-Match or Match-Partition

heuristics. As RP is similar to the well known Multiprocessor Scheduling Problem,

that has been extensively studied in the literature (see, for example, the literature review

by Chen et al., 1999), our approach adapts ideas of Lee & Massey (1988), who present

a heuristic for the latter problem, in its first stage.

An instance of RP is defined by a set U , |U | = n1, of elements (vertices) with weights

wi ∈ Q+, i ∈ U , an upper bound ū, corresponding to the maximum number of elements in

each component, and an upper bound m, defining the maximum number of components.

The objective is to find a feasible partitioning of U , such that the maximum weight (as

defined above) of the components is minimized. A partitioning is feasible, if and only if

it consists of no more than m components with each component containing at most ū

elements.

Our heuristic, denoted by RPH, is composed of two stages. First, we construct a

feasible solution as follows: Let U ′ be the elements of U sorted in non-increasing order

of their weights and initialize m empty components U ′1, . . . , U
′
m. Select an element with

largest weight from U ′ and add it to a component with the smallest weight among all

components with less than ū elements. The stage ends when U ′ is empty.

The next stage is a local search on the obtained solution (U ′1, . . . , U
′
m). Denote the

weight of component U ′i , i ∈ {1, . . . ,m}, by w(U ′i). Select U ′min ∈ arg minU ′i , i∈{1,...,m}
w(U ′i)

and U ′max ∈ arg maxU ′i , i∈{1,...,m}
w(U ′i) and sort the elements of these sets in non-decreasing

order and non-increasing order of their weights, respectively. Let umax
i be the i-th ele-

ment of the sorted component U ′max and umin
i the i-th element of the sorted component

11

U ′min. Next, select one element of U ′max after another, starting with umax
1 , and inter-

change it with a set S = {umin
i , . . . , umin

j |1 ≤ i ≤ j ≤ |U ′min|} of elements of compo-

nent U ′min, if the interchange results in feasible components and reduces the difference

|w(U ′max) − w(U ′min)|. If an interchange has been performed, restart the local search.

Otherwise, if we cannot find a suitable set S for any element of U ′max, stop the local

search.

4.2. Solving the Min-Max Weighted Matching Problem

We apply two heuristics for solving instances of MMWM. First, we implemented

an approximate algorithm that has been developed in Barketau et al. (2015) when in-

troducing MMWM. We will refer to this algorithm as the BPS heuristic. Basically,

the algorithm enumerates over a set of m multipliers that are applied to modify edge

weights of the bipartite graph. For each modified problem instance, the corresponding

MSWM instance is solved by applying the Hungarian algorithm. The resulting matching

is then used to compute the corresponding objective function value of MMWM. BPS then

chooses the best three solutions and tries to improve them by a local search procedure.

We will refer to this local search procedure as LS. For details of the implementation, we

refer to Barketau et al. (2015).

While Barketau et al. (2015) show BPS to be an adequate method for solving

MMWM alone, we implemented another, rather simple, heuristic. This is motivated

by the fact that, when calling a Partition-Match heuristic, we have to solve multiple

instances of MMWM. Hence, in order to reduce running times of the overall procedure,

a simple heuristic seems to be promising. As the approach is based on the regret prin-

ciple (cf., for instance, Domschke & Scholl, 2005), we refer to it as the REG heuristic.

We say that an edge belongs to a component, if it is incident to a vertex of the (given)

component.

REG starts by initializing an empty matching M = ∅. For each component i =

1, . . . ,m of the partitioning, REG then determines the cheapest and second-cheapest

edge, ei1 and ei2, amongst the edges of the component that are not yet incident to matched

vertices of the bipartite graph. The difference of the related edge weights determines the

regret value regi = c(ei2)−c(ei1) for each component i = 1, . . . ,m. If all but one (ei1) edges

of a component i ∈ {1, . . . ,m} are incident to a matched vertex, set regi = L − c(ei1),

where L is a sufficiently large number. If no edge of a component i ∈ {1, . . . ,m} remains

12

incident to an unmatched vertex, set regi = −1. Next, choose a component c with the

largest regret amongst all components and add edge ec1 to M . Repeat the procedure until

regi = −1 for i = 1, . . . ,m. If the corresponding matching is not maximum, determine an

augmenting path and augment M by applying the procedure described in Burkard et al.

(2009, Chapter 4, Algorithm 4.2). Hereafter, if M is maximum, then stop. Otherwise

continue with computing regret values.

4.3. Partition-Match Heuristics

To initialize a Partition-Match heuristic (see Figure 4), we generate (vertex) weights

that are necessary for partitioning the vertex set U by RPH (Section 4.1). We tested

several strategies of generating these weights. As they all performed similarly in compu-

tational tests, we decided on applying the average weight of all edges incident to vertex

u for each vertex u ∈ U .

Once we have generated the initial weights for each vertex u ∈ U , we enter the main

loop of Figure 4. As described above, this loop consists of three stages. First, solve RP

based on the vertex weights that have been generated. Here, we apply RPH. Second,

solve MMWM based on the resulting partitioning. We tested both of the heuristics

described in Section 4.2, i.e. BPS and REG, to solve MMWM. When calling REG, we

apply the local search procedure LS (see Section 4.2) to potentially improve the solution

found by REG (note that BPS applies LS to three solutions). Third, generate new vertex

weights based on the current maximum matching as described above. To avoid cycling

of the algorithm, we monitor the best known solution of the PMMWM input-instance,

being composed of the solutions of RP and MMWM. If there has been no improvement

for 20 iterations of the main loop, we stop the Partition-Match algorithm.

We will refer to the Partition-Match heuristic as described in this section as PMBPS

when applying BPS. When calling REG (including LS), we will refer to the resulting

Partition-Match heuristic as PMREG.

4.4. Match-Partition Heuristics

As described above, Match-Partition heuristics differ from Partition-Match heuristics

in the subproblems that need to be solved. Again, the main loop (see Figure 5) is

composed of three stages. First, we transform the PMMWM input-instance into an

instance of MSWM by dropping the partitioning constraints. To solve the resulting

13

instance of MSWM, we apply a O(n3) (again n := max{n1, n2}) version of the Hungarian

algorithm as presented in Burkard et al. (2009). Given the matching generated in the

first stage, we generate an instance of RP by assigning to each vertex u ∈ U the weight

of the edge incident to u in the obtained matching. As before, the combination of the

solutions of the first two stages define a solution of the PMMWM input-instance. As

we may apply LS (see Section 4.2) to potentially improve this solution, we will refer to

our Match-Partition heuristic as MP if LS is not used and MPLS if LS is used. If the

resulting solution to PMMWM has not improved for 20 iterations, we stop the Match-

Partition heuristic. In the third stage, we alter the weights of the edges of the bipartite

graph. We apply a simple transformation strategy, that increases the weight of exactly

one edge e ∈ E in each iteration of the main loop. The selection of edge e depends

on the current solution of the PMMWM input-instance: Select the component with the

largest weight. Among the current edges of the matching that are incident to vertices

of this component, select the one with largest weight. Then, set the weight of this edge

to a large value (we set the weight to 102 · cmax, where cmax is the largest edge weight

of the input graph, in our computational tests) to reduce the probability that it will

be part of the solution of the altered MSWM instance. After λ iterations of the main

loop, restore the original edge weight of edge e. Our computational tests show that

λ = d0.1 · n1 · n2e is a reasonable value. Note that the perturbed edge weights are only

used for the matching problem in stage one. The vertex weights assigned in stage two

are based on the original weights of the input graph.

5. Computational Results

In order to assess the performance of the algorithms introduced in Section 4, we ran

extensive computational tests. All computational tests were performed on an Intel Core

i7 mobile CPU at 2.8GHz and 8GB of RAM, running Windows 7 64bit. All algorithms

were implemented in C++ (Microsoft Visual Studio 2010). We used IBM ILOG CPLEX

in version 12.5 with 64bit.

In order to get a comprehensive overview of the performance of our algorithms, we

use different strategies of generating instances. All instances are defined on bipartite

graphs with n1 = n2, since the case n1 6= n2 trivially reduces to the case n1 = n2 by

adding edges of zero weight. We define n := n1 = n2.

The first strategy of generating instances is inspired by Barketau et al. (2015). We

14

refer to the instance sets generated by this strategy as BPS70 and BPS80. We gener-

ate n2 rational numbers uniformly distributed in the interval [1, 1000] and a complete

bipartite graph with vertex sets U = {u1, . . . , un} and V = {v1, . . . , vn}. We sort the

numbers in non-decreasing order and denote the resulting list by L. Hereafter, we con-

secutively assign these numbers (as edge weights) to the edges in the following manner:

We start with vertex v1 and assign the first b0.8nc (in case of BPS80) or b0.7nc (in

case of BPS70) elements of L to the edges (u1, v1), (u2, v1), . . . , (ub0.8nc, v1) (BPS80) or

(u1, v1), (u2, v1), . . . , (ub0.7nc, v1) (BPS70) and remove them from L. For the remaining

edges being incident to vertex v1, we randomly choose and assign elements of L. Once

an element of L has been assigned, we remove it from L. The procedure is repeated for

all remaining vertices v ∈ V , v 6= v1.

The second strategy of generating instances constructs complete bipartite graphs

and randomly determines and assigns edge weights uniformly distributed in the interval

[1, 1000]. We refer to instances generated by this strategy as RAND.

Besides BPS70, BPS80, and RAND, all of which are based on complete bipartite

graphs, we generate instances defined on non-complete (or sparse) bipartite graphs with

|E| = d0.7n2e or |E| = d0.8n2e. We refer to them as SPARSE70 and SPARSE80,

respectively. When generating the edges, we guarantee that there exists at least one

feasible solution for the resulting PMMWM instance (cf. restrictions (4)). Again, edge

weights are determined randomly and uniformly distributed in the interval [1, 1000].

For each strategy of generating instances, BPS70, BPS80, RAND, SPARSE70, and

SPARSE80, we construct instances based on different parameter settings. We vary the

size of the bipartitions from 10 to 190, i.e. n = 10, 30, . . . , 190. Furthermore, we set m

to 2, and (if larger than 2) to b0.04nc, b0.08nc or b0.125nc. Similarly, we set ū to d n
m
e,⌊⌈

n
m

⌉
+ 1

3

(
n−

⌈
n
m

⌉)⌋
, or n. For each combination of parameters and each generation

strategy, we construct five PMMWM instances. This results in a total of 2,475 instances.

Let F ∗ be the value of the objective function (10) of the best solution found by a

specific heuristic. Then, we rate the quality of this heuristic with the ratio F ∗

F best , where

F best is the best objective function value among the objective function values of the

solutions obtained by any of the heuristics PMREG, PMBPS, MP and MPLS and the

best solution found by CPLEX (model (10)–(13)) within a time limit of 180 seconds.

Figure 6 gives an overview of the algorithms’ overall qualities over the different values

15

of n. For each n, the figure depicts the average quality over the results of all parameter

settings and all generation strategies. Except for PMREG, all heuristics perform very

well, even for large values of n.

10 30 50 70 90 110 130 150 170 190

1

1.1

1.2

1.3

1.4

1.5

1.6

n

S
o
lu

ti
o
n

q
u

a
li
ty

PMREG

PMBPS

MP

MPLS

Figure 6: Overview of all heuristics.

As in Figure 6, Figure 7 presents a detailed view on the quality of PMBPS, MP ,

and MPLS. We find that both, MP and MPLS, outperform PMBPS in terms of solution

quality. Note, however, that PMBPS still performs at a high level. The specific effect of

including (or not including) LS into Match-Partition heuristics, i.e. MP or MPLS, will

be analyzed in Figures 13 and 14.

10 30 50 70 90 110 130 150 170 190

1

1.002

1.004

1.006

1.008

1.01

1.012

n

S
o
lu

ti
o
n

q
u

a
li
ty

PMBPS

MP

MPLS

Figure 7: Comparison of MPLS , MP , and PMBPS .

Figures 8 and 9 compare the runtimes of the different heuristics. While, for all

heuristics, runtimes increase roughly quadratically in n, we find that PMBPS requires

16

by far the most computational effort. This fact stands against the gap in qualities of

PMREG and PMBPS. PMREG, MP , and MPLS are quite similar in terms of runtimes.

10 30 50 70 90 110 130 150 170 190

0

20

40

60

80

100

120

n

R
u

n
ti

m
e

in
s

PMREG

PMBPS

Figure 8: Runtimes of PMBPS and PMREG.

10 30 50 70 90 110 130 150 170 190

0

0.5

1

1.5

2

2.5

n

R
u

n
ti

m
e

in
s

PMREG

MP

MPLS

Figure 9: Runtimes of PMREG, MP , and MPLS .

In what follows, we will focus on the performance of CPLEX and the heuristics with

respect to the different generation strategies, i.e. different structures of the underlying

bipartite graph.

Figure 10 depicts the performance of CPLEX. Preliminary tests proved CPLEX to

perform better for the linearized model (10)–(13) than for directly feeding it with model

(3)–(9). Hence, we restrict ourselves to the linearized model. As mentioned above,

CPLEX is stopped after 180 seconds and returns the best solution found within this time

limit. Only instances with a size of n = 10 could be solved to optimality within this time

limit. In general, Figure 10 shows the objective function values to be not competitive

17

when compared with the ones determined by the heuristics, which is especially obvious for

RAND, SPARSE70, and SPARSE80 instances. The results for BPS70 and BPS80

instances are better. However, the objective function values determined by CPLEX are

(on average) still up to 600% larger than the ones determined by the best heuristic (in

case of n = 190).

10 30 50 70 90 110 130 150 170 190

0

50

100

150

200

250

300

n

S
o
lu

ti
o
n

q
u

a
li
ty

RAND

BPS70

BPS80

SPARSE70

SPARSE80

Figure 10: Quality of CPLEX.

Figure 11 provides results for PMREG. The average quality of PMREG is dramatically

better than the average quality of CPLEX (Figure 10). While CPLEX reaches quality

ratios larger than 250, these ratios are strictly smaller than 2.5 in case of PMREG. Both,

CPLEX and PMREG, perform best on BPS70 and BPS80 instances. In case of PMREG,

the results for BPS70 and BPS80 are, on average, very close to the best solutions of all

considered heuristics.

10 30 50 70 90 110 130 150 170 190

1

1.2

1.4

1.6

1.8

2

n

S
o
lu

ti
o
n

q
u

a
li
ty

RAND

BPS70

BPS80

SPARSE70

SPARSE80

Figure 11: Quality of PMREG.

18

The results shown in Figure 12 relate to PMBPS. As before, PMBPS is less effective

in case of RAND, SPARSE70, and SPARSE80 instances, but very competitive in

case of BPS70 and BPS80 instances. When comparing PMBPS and PMREG, keep in

mind, that the runtimes of PMBPS increase noticeably faster with increasing size of the

bipartitions (Figure 8). For PMBPS and PMREG, increasing values of n seem to have a

stronger effect on computational effort (in terms of runtime) than on solution quality.

10 30 50 70 90 110 130 150 170 190

1

1.005

1.01

1.015

1.02

1.025

n

S
o
lu

ti
o
n

q
u

a
li
ty

RAND

BPS70

BPS80

SPARSE70

SPARSE80

Figure 12: Quality of PMBPS .

Finally, Figures 13 and 14 present results for MP and MPLS. While MP seems to

be less effective for BPS70 and BPS80 instances, MPLS does not have this handicap.

The peak of the graphs for n = 10 results from CPLEX being able to solve all related

instances to optimality. Note that even in this case of comparison with optimal solutions,

the quality ratio of MPLS is less than 1.0011. For all considered values of n, the runtime

of MPLS is smaller than 6 seconds. The average runtime for n = 190 is around 2.2

seconds (see Figure 9). The influence of including LS on runtimes is (on average) less

than a second for all n and all types of instances. Thus it is advisable to always apply

MPLS when facing a random instance of PMMWM.

6. Conclusion

We have introduced and analyzed the Partitioning Min-Max Weighted Matching

(PMMWM) Problem. PMMWM is a combination of the problem of partitioning a set

of vertices into disjoint subsets of restricted size and the strongly NP-hard Min-Max

Weighted Matching (MMWM) Problem, that has recently been introduced by Barketau

19

10 30 50 70 90 110 130 150 170 190

1

1.0005

1.001

1.0015

1.002

n

S
o
lu

ti
o
n

q
u

a
li
ty

RAND

BPS70

BPS80

SPARSE70

SPARSE80

Figure 13: Quality of MP .

10 30 50 70 90 110 130 150 170 190

1

1.0002

1.0004

1.0006

1.0008

1.001

n

S
o
lu

ti
o
n

q
u

a
li
ty

RAND

BPS70

BPS80

SPARSE70

SPARSE80

Figure 14: Quality of MPLS .

20

et al. (2015). We have proposed a MILP formulation for PMMWM and provided a

proof of the problem’s strong NP-hardness. Moreover, we have presented two heuristic

frameworks. For each framework, two variants have been designed. PMREG and PMBPS

are based on the Partition-Match framework and MP and MPLS are based on the

Match-Partition framework. The performance of all four heuristics has been tested in

an extensive computational study. We have generated instances of different types in

order to create a comprehensive overview of the performance of the algorithms. Each

of our heuristics has outperformed CPLEX. The Match-Partition framework has been

more effective than the Partition-Match framework. Furthermore, MPLS has shown to

be robust against varying structures of the problem’s underlying graph.

Acknowledgement

This work has been supported by the German Science Foundation (DFG) through

the grant “Scheduling mechanisms for rail mounted gantries with regard to crane inter-

dependencies” (PE 514/22-1).

References

Barketau, M., Pesch, E., & Shafransky, Y. (2015). Minimizing maximum weight of

subsets of a maximum matching in a bipartite graph. Discrete Applied Mathematics ,

in press . doi:10.1016/j.dam.2015.01.008.

Boysen, N., & Fliedner, M. (2010). Determining crane areas in intermodal transshipment

yards: The yard partition problem. European Journal of Operational Research, 204 ,

336–342.

Boysen, N., Fliedner, M., Jaehn, F., & Pesch, E. (2013). A survey on container processing

in railway yards. Transportation Science, 47 , 312–329.

Burkard, R., Dell’Amico, M., & Martello, S. (2009). Assignment Problems . Philadelphia:

Siam.

Chen, B., Potts, C. N., & Woeginger, G. J. (1999). A review of machine scheduling:

Complexity, algorithms and approximability. In D.-Z. Du, & P. M. Pardalos (Eds.),

Handbook of Combinatorial Optimization, Vol. 1 (pp. 1493–1641). Boston: Kluwer.

21

http://dx.doi.org/10.1016/j.dam.2015.01.008

Domschke, W., & Scholl, A. (2005). Grundlagen der Betriebswirtschaftslehre. (3rd ed.).

Berlin: Springer.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability – A Guide to the

Theory of NP-Completeness . New York: Freeman.

Isoloader (2012). When to choose a straddle and when to choose a forklift. URL:

http://www.isoloader.com/downloads/ [accessed online, June 2015].

Kemme, N. (2012). Effects of storage block layout and automated yard crane systems

on the performance of seaport container terminals. OR Spectrum, 34 , 563–591.

Kozan, E., & Preston, P. (1999). Genetic algorithms to schedule container transfers at

multimodal terminals. International Transactions in Operational Research, 6 , 311–

329.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research

Logistics Quarterly , 2 , 83–97.

Lee, C.-Y., & Massey, J. D. (1988). Multiprocessor scheduling: Combining LPT and

MULTIFIT. Discrete Applied Mathematics , 20 , 233–242.

Preston, P., & Kozan, E. (2001). An approach to determine storage locations of con-

tainers at seaport terminals. Computers & Operations Research, 28 , 983–995.

22

http://www.isoloader.com/downloads/

	Introduction
	Detailed Problem Definition and Applications
	Computational Complexity
	Algorithms
	Solving the Restricted Partitioning Problem
	Solving the Min-Max Weighted Matching Problem
	Partition-Match Heuristics
	Match-Partition Heuristics

	Computational Results
	Conclusion

