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Abstract

This paper analyzes (r|p)-centroid problems on networks with vertex and edge demand
under a binary choice rule. Bilevel programming models are presented for the discrete
problem class. Furthermore, NP-hardness proofs for the discrete and continuous (1|p)-
centroid problem on general networks with edge demand only are provided. Nevertheless,
an efficient algorithm to determine a discrete (1|p)-centroid of a tree network with vertex
and edge demand can be derived.
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1. Introduction

Location problems are concerned with the location of (physical or nonphysical) re-
sources in some given space. Competitive location models (dating back to Hotelling [1])
additionally incorporate the fact that location decisions have been or will be made by inde-
pendent decision-makers who will subsequently compete with each other, e.g. for market
share when we think of locating facilities such as gas stations or supermarkets. Several
reviews and classifications have appeared in this field. They include Drezner [2], Eiselt
et al. [3], Eiselt and Laporte [4], Kress and Pesch [5], Plastria [6], Serra and ReVelle [7].

The representation of the location space may be divided into different classes. We fol-
low ReVelle and Eiselt [8] in differentiating between d-dimensional real space and network
location problems, each of which further being subdivided into continuous and discrete
problems. A discrete problem arises, when the set of candidate locations is assumed to
be finite and known a priori. In a continuous problem, any point of the network or the
d-dimensional space is a potential location site. By identifying finite sets of points that
capture optimal locations (finite dominating sets, Hooker et al. [9]), some continuous
problem classes can be transformed into equivalent discrete problem classes a posteriori.
Customer behavior is represented by some kind of choice rule. A choice rule is said to
be binary (or deterministic), when the total demand of a customer is served by a single

∗Corresponding author, phone: +49 271 740 3402, fax: +49 271 740 2940
Email addresses: dominik.kress@uni-siegen.de (Dominik Kress), erwin.pesch@uni-siegen.de

(Erwin Pesch)

† This is an Accepted Manuscript of an article published by Elsevier in Computers & Operations
Research on 5 March 2012, available online: https://doi.org/10.1016/j.cor.2012.02.025
c© 2012. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:

//creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.cor.2012.02.025
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


facility; it is said to be probabilistic (or proportional), if demand is split over multiple fa-
cilities. Other fundamental categories of competitive location theory are related to game
theoretic aspects. Competition itself, for instance, may be static, dynamic, or competitors
may enter in a simultaneous or sequential fashion. The latter mode of competition (rooted
in the work of Hay [10] and Prescott and Visscher [11]) is characterized by two types of
players: leaders, who choose locations at given instants, anticipating the subsequent ac-
tions of later entrants, and followers, who make their location decisions based on the past
decisions of the leaders. The solution concept generally employed in sequential location
problems is the Stackelberg equilibrium [12]: Assuming rational players, the location of
each player is determined by backward induction.

Hakimi [13] formally introduced the terms (r|Xp)-medianoid problem and (r|p)-centroid
problem for sequential games with one leader (L) and one follower (F) locating p and r
facilities, respectively. Note that r and p are arbitrary input parameters. Knowing the
p locations of L, denoted by Xp = (x1, ..., xp), F faces the problem of optimally locating
r facilities (with respect to some objective function): the (r|Xp)-medianoid problem. L’s
problem, the (r|p)-centroid problem, is to locate p facilities, anticipating F’s subsequent
behavior. In this paper we will consider the objective of maximizing market share for
both, L and F. We will generally precede the terms (r|p)-centroid and (r|Xp)-medianoid
problem with the terms discrete, continuous, binary or proportional throughout the rest
of the paper. This clarifies the type of choice rule (binary or proportional) and location
space (discrete or continuous problems on networks) under consideration.

Whereas competitive location models in R1 typically assume the demand to be con-
tinuously dispersed over the line segment, the majority of network models incorporate
discrete demand, i.e. demand arising in the vertices of the network. Dasci et al. [14]
and Okunuki and Okabe [15] were among the first to consider demand densities over the
edges of competitive location problems on general networks. In an urban context, the
motivation is as follows: Cities are typically modeled as networks. Edges correspond to
streets and vertices represent intersections. The houses of a city are usually dispersed
over the streets. Thus, demand is typically non-discrete. While Dasci et al. [14] and
Okunuki and Okabe [15] consider (r|Xp)-medianoid problems, it is the aim of this paper
to apply the concept of edge demand to (r|p)-centroid problems. We will show that the
discrete and continuous, binary (1|p)-centroid problem are NP-hard on general networks
with edge demand only. Furthermore, we will adapt the definition of ξ-bounding sets by
Spoerhase and Wirth [16] to design an efficient algorithm to determine a discrete, binary
(1|p)-centroid of a tree network with vertex and edge demand.

The remainder of this paper is organized as follows. The notation and definitions used
throughout the paper are given in Section 2. Section 3 is devoted to the binary (r|p)-
centroid problem with vertex and edge demand on general networks. We present bilevel
programming formulations for the discrete problem class in Section 3.1. While the focus
of the paper is on drawing the line between hard and easy problems, some computational
results for the corresponding (r|Xp)-medianoid problem are given in Section 3.2 to illus-
trate the need for approximate solution procedures when designing heuristic algorithms
for the leader’s problem. The above-mentioned NP-hardness proofs are subject of Section
3.3. Section 3.4 is concerned with the identification of finite dominating sets. The efficient
algorithm for the discrete, binary (1|p)-centroid problem on a tree network with vertex
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and edge demand is given in Section 4. We introduce the basic ideas by restricting our
attention to chain networks in Section 4.1, before describing the algorithm itself in Section
4.2. The paper ends with a conclusion in Section 5.

2. Basic notation and definitions

We extend and use the notation of Bandelt [17] in this paper (cf. also [18]). A network
N = (V,E, λ) consists of a finite set V (|V | = n), a finite set E (|E| = m) of two-element
subsets of V and a mapping λ : E → R+. The pair (V,E) gives a graph in the usual sense
(cf. [19]). The elements v of V are called vertices of the network. The elements e of E are
the edges. Every edge joins two distinct vertices of N . If e is an edge joining u and v this
is expressed by the shorthand e = [u, v]. We assume that all edges are undirected, hence
[u, v] = [v, u]. The value λ(e) = λ(uv) is the length of e. An edge [u, u] is a loop. The
sum of the number of edges that join a vertex v ∈ V with other vertices of the network
and twice the number of loops at v is the degree of v. The points x of N (x ∈ N) are the
elements of the edges (including all vertices). Two points x and y on an edge e (x, y ∈ e)
determine a subedge [x, y] of e, the length of which is denoted by λ([x, y]). A path P (x, y)
joining two points x ∈ [u, v] and y ∈ [w, z] is either a subedge or a sequence of edges and
(at most two) subedges passing at most once through each point, where P (x, y) contains
x and y but no proper connected subset of P (x, y) does. The points x and y are the end
points of P (x, y). The length of P (x, y) is equal to the sum of the lengths of the edges and
subedges. If the length of P (x, y) is minimum among all paths connecting x and y, then
P (x, y) is a shortest path; its length is the distance d(x, y) between x and y. We define
D(p, Z) := min{d(p, z)|z ∈ Z} for a point p ∈ N and a set of points Z ⊆ N . A cycle
consists of an edge e joining two vertices u and v and some path P (u, v) 6= e connecting u
and v. A network is connected if for any two points x and y there exists a path joining x
and y. A connected network without cycles is a tree network. A tree network where every
vertex is incident to at most two edges is a chain network. We assume that the networks
considered in this paper are connected and that there are no multiple edges. Moreover,
we assume that there are no loops at the vertices.

Let V ′ be a subset of the vertex set of N . The network N ′ = (V ′, E ′, λ′) is the
subnetwork of N on the vertex set V ′, if E ′ is a subset of E such that each edge of E
joining u and v belongs to E ′ if and only if u and v are in V ′. The mapping λ′ is the
restriction of λ to E ′.

Let a tree network N = (V,E, λ) be rooted at some distinguished vertex r ∈ V . For
each pair of vertices i ∈ V and j ∈ V , we call i a descendant of j, if j is on the unique
path that connects i to the root r. If i is a descendant of j, we call j an ancestor of
i. A vertex v ∈ V is a common ancestor of two vertices x, y ∈ V , if it is an ancestor
of both, x and y. A common ancestor of two vertices x, y ∈ V is the nearest common
ancestor, nca(x, y), of these very vertices, if its distance to the root is the largest among
all common ancestors. If i ∈ V is a descendant of j ∈ V and [i, j] ∈ E, then i is said
to be a child of j and j is called the father of i. A vertex without children is a leaf of
the tree network. For any vertex v ∈ V we denote the subnetwork (subtree) of N on the
vertex set VTv := {v} ∪ {i ∈ V |i is a descendant of v} by Tv and the subnetwork on the
vertex set V ′Tv := VTv \ {v} by T ′v.

3



We associate a (local) coordinate xuv ∈ [0, λ(uv)] with every edge [u, v] ∈ E of a graph
N . Thus, we are able to define any point of the graph. The direction of counting can be
defined arbitrarily.

A finite number of users is located at the vertices of the network N (vertex demands,
vertex customers). At each vertex there may be several users or none at all. Their
demand is described by a weight function π : V → R+

0 . We define π(x) := 0 for all x /∈ V .
Additionally, we consider a mapping δ : E → R+

0 with every edge e = [u, v] ∈ E. The
value δ(e) = δ(uv) is the uniform demand density (edge demand, edge customer) of the
edge e = [u, v], i.e. the demand per unit of length (see Figure 1). δ and π may not be
equal to the zero function at the same time.

uvx
(uv )

(uv )

(u ) (v )

u v

Figure 1: Vertex and edge demand.

For a subnetwork N ′ of N we denote by π(V ′) the sum
∑

u∈V ′ π(u) where V ′ is the
vertex set of N ′. Analogously, we denote by δ(E ′) the sum

∑
e∈E′ δ(e) · λ(e) where E ′

is the edge set of N ′. Finally, we define ξ(N ′) := π(V ′) + δ(E ′). We denote the ac-
cumulated demand of the customers who accommodate their demand at F’s facilities
by WF (Yr(Xp)|Xp), where Yr(Xp) corresponds to an arbitrary feasible set of F’s loca-
tions, given the location decision Xp of L. The optimal follower’s market share is de-
noted by W ∗

F (Yr(Xp)|Xp). Analogously, we denote L’s (optimal) market share by WL(r|p)
(W ∗

L(r|p)).
Let N = (V,E, λ) be a tree network. Add an artificial vertex n+ 1 with π(n+ 1) = 0

as the root of N and connect it to an arbitrary vertex s ∈ V by an artificial edge [s, n+ 1]
with λ([s, n+ 1]) =∞ and δ([s, n+ 1]) = 0.

Definition 1 (Spoerhase and Wirth [16]). Let X ⊆ V \ {n + 1} be a vertex subset and
0 ≤ ξ̂ ≤ ξ(N). Set X is called ξ̂-bounding if

1. W ∗
F (Y1(X)|X) ≤ ξ̂ and

2. ∀ x ∈ X with father x′ we have W ∗
F (Y1((X \ {x}) ∪ {x′})|(X \ {x}) ∪ {x′}) > ξ̂.

Finally, we define:

Definition 2. Let N = (V,E, λ) be a tree network. Furthermore, let X ⊆ V , v ∈ V and
u be the father of v, {u, v} ∩ X = ∅. Then the X-subtracted subtree rooted in u is the
subnetwork on the vertex set

VXs := {u} ∪

VTv \ ⋃
i∈{X∩VTv}

V ′Ti

 .
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3. The binary (r|p)-centroid problem with vertex and edge demand

In the remainder of this paper we will consider a binary choice rule, i.e. each customer
chooses the closest facility to accommodate all of his demand. We additionally assume
that ties are broken in favor of the leader. This is a common assumption in the field
of competitive location problems; see, for example, Hakimi [20] (binary (r|p)-centroid
problem with vertex demand only) or Hansen and Labbé [21], Hansen and Thisse [22]
(Condorcet and Simpson points). As a direct consequence we may assume that p+ r ≤ n
for the discrete version of the centroid problem under consideration.

3.1. Bilevel programming models for the discrete, binary (r|p)-centroid problem with vertex
and edge demand

Consider the discrete, binary (r|p)-centroid problem with vertex and edge demand.
For the remainder of this section, we assume – without loss of generality – that the
underlying network is complete. If this is not the case, we simply add missing edges with
infinite edge lengths and zero demand densities.

We define the following variables:

xFij :=


1 if the vertex customers located in vertex i are served

by a follower’s facility located in vertex j,
0 else,

∀ i, j ∈ V, (1)

xLij :=


1 if the vertex customers located in vertex i are served

by a leader’s facility located in vertex j,
0 else,

∀ i, j ∈ V, (2)

yFj :=

{
1 if the follower locates in vertex j,
0 else,

∀ j ∈ V, (3)

yLj :=

{
1 if the leader locates in vertex j,
0 else,

∀ j ∈ V. (4)

For all i, j = 1, ..., n, let Cij and C̄ij be the sets of vertices k with d(k, i) < d(i, j) or
d(k, i) = d(i, j), respectively (cf. also Dobson and Karmarkar [23]). Furthermore, define
Ĉij := Cij∪C̄ij. We can now state a binary bilevel nonlinear programming model (BBNP)
for the problem under consideration (refer to Dempe [24] for an introduction to bilevel
programming).

max
xL,yL

n∑
i=1

n∑
j=1

xLij

[
π(i) +

n∑
k=1

1
2
δ(i, k)

(
λ(i, k)− d(i, j) +

n∑
l=1

(xLkl + xFkl)d(k, l)

)]
(5)

subject to
n∑
j=1

yLj = p, (6)

xLij ≤ yLj ∀ i, j = 1, ..., n, (7)
n∑
j=1

xLij ≤ 1 ∀ i = 1, ..., n, (8)

xLij + yLk ≤ 1 ∀ i, j = 1, ..., n, k ∈ Cij (9)

xLij + yFk ≤ 1 ∀ i, j = 1, ..., n, k ∈ Cij (10)
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and xF , yF being a solution of

max
xF ,yF

n∑
i=1

n∑
j=1

xFij

[
π(i) +

n∑
k=1

1
2
δ(i, k) (λ(i, k)− d(i, j)

+
n∑
l=1

(xLkl + xFkl)d(k, l))

]
(11)

subject to
n∑
j=1

yFj = r, (12)

xFij ≤ yFj ∀ i, j = 1, ..., n, (13)
n∑
j=1

(
xFij + xLij

)
= 1 ∀ i = 1, ..., n, (14)

xFij + yLk ≤ 1 ∀ i, j = 1, ..., n, k ∈ Ĉij (15)

xFij + yFk ≤ 1 ∀ i, j = 1, ..., n, k ∈ Cij (16)

xLij, x
F
ij ∈ {0, 1} ∀ i, j = 1, ..., n, (17)

yLj , y
F
j ∈ {0, 1} ∀ j = 1, ..., n. (18)

The objective functions (5) and (11) correspond to the maximization of the market
share of each of the players, taking into account vertex and edge demand. Constraints (6)
and (12) ensure that the players locate exactly p and r facilities, respectively. Conditions
(7) and (13) guarantee that a (vertex) customer can only be served if the corresponding
facility has been opened. Constraints (8) and (14) relate to the fact that the demand of
each (vertex) customer must be served by exactly one facility, while conditions (9), (10),
(15) and (16) guarantee that each (vertex) customer is served by its closest facility (cf.
Dobson and Karmarkar [23]). Observe that edge customers are guaranteed to be served
implicitly. Figure 2 depicts an example. Vertex i is served by a leader’s facility in vertex
j, while vertex k is served by a follower’s facility in vertex l. Therefore, there must exist a
point xik = x on edge [i, k], where d(i, j) + x = λ(i, k)− x+ d(k, l). Every edge customer
located at xik ≤ x (xik > x) will be served by the leader (follower).

([ i ,k ]),

([ i ,k ])




i kj l

ikx

d( j ,i ) d(k,l )

L

ijx 1 F

klx 1

Figure 2: Serving of edge customers.

Observe that

n∑
i=1

n∑
j=1

xLij

[
π(i) +

n∑
k=1

1

2
δ(i, k)

(
λ(i, k)− d(i, j) +

n∑
l=1

(xLkl + xFkl)d(k, l)

)]

=
n∑
i=1

n∑
j=1

xLijπ(i) +
n∑
i=1

n∑
j=1

n∑
k=1

1

2
δ(i, k)xLij (λ(i, k)− d(i, j))

+

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

1

2
δ(i, k)xLijx

L
kld(k, l) +

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

1

2
δ(i, k)xLijx

F
kld(k, l).
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An analogous result holds for the follower’s objective function. Thus, we may linearize
BBNP by defining binary variables zLLijkl, z

LF
ijkl, z

FL
ijkl and zFFijkl for all i, j, k, l = 1, ..., n and

introducing additional constraints. This results in a binary bilevel linear programming
model (BBLP).

max
xL,yL

n∑
i=1

n∑
j=1

xLijπ(i) +
n∑
i=1

n∑
j=1

n∑
k=1

1
2
δ(i, k)xLij (λ(i, k)− d(i, j))

+
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

1
2
δ(i, k)zLLijkld(k, l) +

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

1
2
δ(i, k)zLFijkld(k, l) (19)

subject to constraints (6)-(10)

zLLijkl ≤ 1
2
(xLij + xLkl) ∀ i, j, k, l = 1, ..., n, (20)

zLFijkl ≤ 1
2
(xLij + xFkl) ∀ i, j, k, l = 1, ..., n, (21)

and xF , yF being a solution of

max
xF ,yF

n∑
i=1

n∑
j=1

xFijπ(i) +
n∑
i=1

n∑
j=1

n∑
k=1

1
2
δ(i, k)xFij (λ(i, k)− d(i, j))

+
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

1
2
δ(i, k)zFLijkld(k, l)

+
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

1
2
δ(i, k)zFFijkld(k, l) (22)

subject to constraints (12)-(18)

zFLijkl ≤ 1
2
(xFij + xLkl) ∀ i, j, k, l = 1, ..., n, (23)

zFFijkl ≤ 1
2
(xFij + xFkl) ∀ i, j, k, l = 1, ..., n, (24)

zLLijkl, z
LF
ijkl ∈ {0, 1} ∀ i, j, k, l = 1, ..., n, (25)

zFLijkl, z
FF
ijkl ∈ {0, 1} ∀ i, j, k, l = 1, ..., n. (26)

Constraints (20), (21), (23) and (24) can easily be rearranged to receive a disaggregated
model (BBLP2). Inequalities (20), for example, may be replaced by

zLLijkl ≤ xLij ∀ i, j, k, l = 1, ..., n, (27)

zLLijkl ≤ xLkl ∀ i, j, k, l = 1, ..., n. (28)

3.2. Potential solution approaches for the discrete, binary (r|p)-centroid problem on gen-
eral networks with vertex and edge demand

The focus in the remainder of this paper is on drawing the line between hard and easy
(r|p)-centroid problems with vertex and edge demand. Nevertheless, we give some basic
results concerning the design of solution approaches for the discrete, binary (r|p)-centroid
problem on general networks with vertex and edge demand in this section.

Due to their hierarchical structure, bilevel programming problems are very hard to
solve. The fact that even the linear bilevel programming problem in continuous variables
is NP-hard in the strong sense [25, Chap. 5] suggests, that we are unlikely to be confronted
with polynomially time solvable problems. Indeed, as we will see in the following section,
the discrete, binary (1|p)-centroid problem on a general network is NP-hard if we consider
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vertex demand only, edge demand only or vertex and edge demand. Thus, the design
of exact solution approaches does not seem to be very promising. Heuristic solution
approaches will need to compute or approximate the follower’s response to some given
set of leader’s locations. Since the discrete, binary (r|X1)-medianoid problem is known
to be NP-hard on general networks (again, for the case of vertex demand only, edge
demand only or vertex and edge demand, cf. Dasci et al. [14], Hakimi [20]), calculating
the follower’s response is most likely too expensive with regard to computational time. To
support this assumption, we have coded the model BBNP in C++ for fixed sets of leader’s
locations. The resulting quadratic programs were solved with CPLEX 12.2 with a time
limit of 1800 seconds. We generated a total of 50 test networks; ten complete networks
for n = 5, 10, 15, 20, 25, respectively. Integer edge lengths, edge demand densities and
vertex demands with λ([u, v]) ∈ [1, 5], δ([u, v]) ∈ [0, 10] and π(u) ∈ [0, 10] for all u, v ∈ V
were generated randomly. Test instances were run on a Laptop with an Intel Core i7
CPU, 2.67 GHz, 4GB system memory, running under the 64bit Windows 7 Professional
operating system. Figures 3 and 4 plot the average computational time for the 5 network
sizes with r = 1, 2, 3, 4 and p = 1 or p = 2 random leader locations. Details are given in
the appendix. For additional test instances on networks with n ≥ 40 we frequently ran
out of memory while generating or solving the models.

600

800

1000

1200

1400

1600

Time [sec] r=1

r=2

r=3

0

200

400

5 10 15 20 25

Number of vertices

r=4

Figure 3: Computational results for the medianoid problem, p = 1.

Thus, since computational times are fairly large for test instances on relatively small
networks, it seems to be reasonable to approximate the follower’s response when design-
ing heuristic algorithms for the discrete, binary (r|p)-centroid problem on networks with
vertex and edge demand. Therefore, we refer to the tabu search algorithms by Benati
and Laporte [26] for discrete, binary (r|p)-centroid and (r|Xp)-medianoid problems on
networks with vertex demand only. These algorithms can be adapted to our case, since
the objective function of the discrete, binary (r|Xp)-medianoid problem with vertex de-
mand only remains submodular and non-decreasing when additionally incorporating edge
demand.

Lemma 1. The objective function of the discrete, binary (r|Xp)-medianoid problem with
vertex and edge demand is submodular.

8



100

150

Time [sec] r=1

r=2

r=3

0

50

5 10 15 20 25

Number of vertices

r=4

Figure 4: Computational results for the medianoid problem, p = 2.

Proof. Let Yr be a solution to a discrete, binary (r|Xp)-medianoid problem with vertex
and edge demand. Furthermore, let S ⊂ T ⊂ Yr and k ∈ V \T . We want to show that
WF (T ∪ {k}|Xp)−WF (T |Xp) ≤ WF (S ∪ {k}|Xp)−WF (S|Xp).

We define ∆v(T, k) (∆v(S, k)) to be the increase in the follower’s market share that is
induced by vertex customer v ∈ V when augmenting T (S) with an additional facility in
vertex k. Similarly, ∆[u,v](T, k) (∆[u,v](S, k)) is defined to be the increase in the follower’s
market share that is induced by the demand over edge [u, v]. Therefore, WF (T∪{k}|Xp)−
WF (T |Xp) =

∑
v∈V ∆v(T, k) +

∑
[u,v]∈E ∆[u,v](T, k) and WF (S ∪ {k}|Xp) −WF (S|Xp) =∑

v∈V ∆v(S, k) +
∑

[u,v]∈E ∆[u,v](S, k).
One of the following cases holds for every vertex v ∈ V :

1. D(v, T ) ≥ D(v,Xp)

(a) and d(v, k) ≥ D(v,Xp),

(b) and d(v, k) < D(v,Xp),

2. D(v, T ) < D(v,Xp), D(v, S) ≥ D(v,Xp)

(a) and d(v, k) ≥ D(v,Xp),

(b) and d(v, k) < D(v,Xp), d(v, k) ≥ D(v, T ),

(c) and d(v, k) < D(v,Xp), d(v, k) < D(v, T ),

3. D(v, S) < D(v,Xp)

(a) and d(v, k) ≥ D(v, S),

(b) and d(v, k) < D(v, S), D(v, S) = D(v, T ),

(c) and d(v, k) < D(v, S), D(v, S) > D(v, T ).

Thus, for an arbitrary vertex v ∈ V , we have ∆v(S, k) = ∆v(T, k) = 0 for cases
1.a, 2.a, 3.a, 3.b and 3.c; ∆v(S, k) = ∆v(T, k) = π(v) for case 1.b; ∆v(S, k) = π(v) ≥
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∆v(T, k) = 0 for cases 2.b and 2.c. Similarly, for an arbitrary edge [u, v] ∈ E, we have
∆[u,v](T, k) ≤ ∆[u,v](S, k). The related case differentiation is fairly simple but rather
lengthy (36 possible combinations of cases 1.a – 3.c). Hence, for the sake of brevity, we
leave it to the reader.

Obviously, if S ⊂ T , then WF (S|Xp) ≤ WF (T |Xp). This is a direct consequence of
the non-negativity of the vertex demands and edge demand densities. Hence, analogously
to Benati and Laporte [26], one may apply Theorem 9.3 of Nemhauser and Wolsey [27,
Chap. III.3]. Therefore, W ∗

F (r|Xp) ≤ (1 − [(r − 1)/r]r)−1W g
F (r|Xp), where W g

F (r|Xp) is
the follower’s market share obtained through a greedy heuristic.

Another promising approach might be the use of genetic algorithms, as the study by
Jaramillo et al. [28] indicates (cf. also Arostegui Jr. et al. [29]).

3.3. Some complexity results

This section aims at extending some well known complexity results on (r|p)-centroid
problems. Hakimi [20] provides a NP-hardness proof for the continuous, binary (1|p)-
centroid problem on a general network with vertex demand only. Spoerhase and Wirth
[16] have recently extended this result by showing that Hakimi’s result remains true
on pathwidth bounded graphs with vertex demand only.1 Hence, we can immediately
conclude:

Theorem 1. The problem of finding a continuous, binary (1|p)-centroid of a network
N = (V,E, λ) with vertex and edge demand is NP-hard.

Proof. The NP-hard [20] continuous, binary (1|p)-centroid problem with vertex demand
only is a special case of the continuous, binary (1|p)-centroid problem with vertex and
edge demand.

In what follows, we will show that the problem remains NP-hard even if we drop the
vertex weights. This is in line with the results of Dasci et al. [14] for the continuous,
binary (r|X1)-medianoid problem with (vertex and) edge demand.

Theorem 2. The problem of finding a continuous, binary (1|p)-centroid of a network
N = (V,E, λ) with edge demand only, i.e. π(v) = 0 for all v ∈ V , is NP-hard.

Proof. The proof is in analogy to Hakimi [20] who considers networks with vertex demand
only. The theorem is proven by reducing the Vertex Cover (VC) problem (cf. Garey and
Johnson [30, p. 190]).

Vertex Cover Problem: Given a graph G = (V,E) and an integer p ≤ |V |, is there a
subset V ′ ⊆ V with |V ′| ≤ p such that for each edge e = [u, v] ∈ E at least one of u and
v belongs to V ′?

Consider an instance I(V C) of the VC problem on graph G = (V,E) and replace each
edge ej = [u, v] ∈ E by the structure shown in Figure 5 (“diamond structure joining u
and v” (Hakimi [20])) to construct a network N1 = (V1, E1) with the corresponding edge
lengths λ and edge demand densities δ.

1See Spoerhase and Wirth [16] for a definition of pathwidth bounded graphs.
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Figure 5: Diamond structure.

We will show that there exists a set of p points Xp on N1 such that WF (Y1(Xp)|Xp) ≤ 1
for every point Y1(Xp) on N1 if and only if the VC instance has a solution. This will prove
the theorem.

“If”: Suppose V ′ is a solution of I(V C) and let Xp = V ′ on N1. Then for any diamond
structure joining u and v in N1, either u, v or both belong to V ′ = Xp. Thus, we obviously
have WF (Y1(Xp)|Xp) ≤ 1 for any point Y1(Xp) on N1 (recall that ties are broken in favor
of the leader).

“Only if”: Assume that a set of p points Xp on N1 is such that WF (Y1(Xp)|Xp) ≤ 1
for every point Y1(Xp) on N1. If there exists at least one point of Xp on each diamond
of N1, then one can move these points to (≤ p) vertices V ′ ⊆ V such that each diamond
has at least one vertex in V ′. Then V ′ is a solution to I(V C). Therefore, we may
assume that there exists a diamond structure in N1 joining, say, u and v such that this
diamond structure contains no point of Xp. Suppose, min{D(u,Xp), D(v,Xp)} > 2. It is
immediately implied that WF (u|Xp) ≥ 2 or WF (v|Xp) ≥ 2 so that we may assume 0 <
min{D(u,Xp), D(v,Xp)} ≤ 2. Without loss of generality, let min{D(u,Xp), D(v,Xp)} =
D(u,Xp). Let us say there exists another diamond in N1 that corresponds to edge ê =
[u, v′] ∈ E and thus joins u and v′, where v 6= v′. If there is exactly one point xp ∈ Xp on
this diamond, then we can always select Y1(Xp) to lie on an edge of this diamond incident
to u such that WF (Y1(Xp)|Xp) > 1:

1. If xp is a point on edge [u, ê
′′′′

] (or, analogously, on edge [u, ê
′
]) with 0 < d(u, xp) < 2,

then we select Y1(Xp) = u.

2. If xp is a point on edge [u, ê
′′′

] (or, analogously, on edge [u, ê
′′
]) with 0 < d(u, xp) < 1,

then we choose Y1(Xp) = u as well.

3. If xp is a point on edge [v′, ê
′′′

] or [ê
′′′
, ê
′′′′

] (including the vertices v′, ê
′′′

and ê
′′′′

),
then we select Y1(Xp) to lie on edge [u, ê

′′
] such that d(u, Y1(Xp)) < D(v,Xp). The

case where xp is a point on edge [v′, ê
′′
] or [ê

′
, ê
′′
] is treated analogously (symmetry

of the diamond).

4. If xp is a point on edge [ê
′′
, ê
′′′

] with xp 6= ê
′′

and xp 6= ê
′′′

, then we select Y1(Xp) = ê
′′

or Y1(Xp) = ê
′′′

.

11



Therefore, there must exist at least two points of Xp on the diamond structure joining u
and v′. This implies that, if there exist no points of Xp on an arbitrary diamond structure
of N1, then there are at least two points of Xp on one “adjacent” diamond structure of
N1. Therefore, there are enough points to be moved to all diamonds of N1 so that the
existence of a solution to VC is established.

The hardness results that have been subject of this section carry over to the dis-
crete versions of the related (1|p)-centroid problems. Spoerhase and Wirth [16] explicitly
show this for the discrete, binary (1|p)-centroid problem with vertex demand only on a
pathwidth bounded graph so that, analogously to Theorem 1, we can conclude:

Theorem 3. The problem of finding a discrete, binary (1|p)-centroid of a network N =
(V,E, λ) with vertex and edge demand is NP-hard.

Moreover, we note that the proof of Theorem 2 can easily be adapted for the discrete,
binary (1|p)-centroid problem with edge demand only. Therefore, we have:

Theorem 4. The problem of finding a discrete, binary (1|p)-centroid of a network N =
(V,E, λ) with edge demand only is NP-hard.

Proof. We augment the diamond structure of Figure 5 by inserting vertices e1j , e
2
j , e

3
j and

e4j at the midpoints of the edges [u, e
′′
j ], [u, e

′′′
j ], [v, e

′′
j ] and [v, e

′′′
j ].

The proof of Theorem 2 remains unchanged apart from the case differentiation: If
there lies exactly one point xp ∈ Xp on the diamond joining u and v′, then we can always
select Y1(Xp) to lie on a vertex of this diamond such that WF (Y1(Xp)|Xp) > 1:

1. If xp = v′, xp = ê1, xp = ê2, xp = ê3, xp = ê4, xp = ê
′

or xp = ê
′′′′

then we select
Y1(Xp) = u.

2. If xp = ê
′′

then we select Y1(Xp) = ê4.

3. If xp = ê
′′′

then we select Y1(Xp) = ê3.

The conclusion of the proof of Theorem 2 is therefore still true.

Table 1 summarizes the complexity results.

Table 1: NP-hard binary (1|p)-centroid problems.

type of demand continuous discrete

vertex demand only NP-hard on general networks [20] NP-hard on general networks [20]

NP-hard on pathwidth bounded graphs [16] NP-hard on pathwidth bounded graphs [16]

vertex and edge demand NP-hard on general networks / pathwidth bounded graphs (implied)

edge demand only NP-hard on general networks (Theorem 2) NP-hard on general networks (Theorem 4)

Polynomial time algorithms are due to Hansen and Labbé [21] (continuous, binary
(1|1)-centroid problem on general networks with vertex demand only) and Spoerhase and
Wirth [16] (discrete and continuous, binary (1|p)-centroid problems on tree networks with
vertex demand only). We extend these results in the following section by providing an
efficient algorithm for the discrete, binary (1|p)-centroid problem on tree networks with
vertex and edge demand.
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3.4. Finite dominating sets

A finite dominating set for the continuous, binary (r|Xp)-medianoid problem with
vertex demand only has been introduced by Megiddo et al. [31]. The authors prove that
there always exists an optimal solution at a set of so called boundary points (cardinality
O(nm)) of the network. Dasci et al. [14] extend this result to the case of vertex and edge
demand. They show that an instance of the continuous, binary (r|Xp)-medianoid problem
with vertex and edge demand does not always possess an optimal solution. Therefore,
they seek ε-optimal solutions, i.e. solutions that guarantee an objective function value at
most ε units away from a known upper bound, and establish a finite dominating set of
cardinality O(nm) by presenting a simple augmentation of the boundary point set. One
needs to additionally consider the set of all γ-points, i.e. points located γ units away from
a vertex, where γ has to be sufficiently small.

Discretization results concerning (r|p)-centroid problems are rather limited in the lit-
erature (cf. Kress and Pesch [5]). An optimal solution to the continuous, binary (r|1)-
centroid problem of a general network with vertex demand only is always a vertex for
r ≥ 2, while this is not the case for r = 1. If we restrict the network to be a tree, however,
there always exists a vertex that is a (1|1)-centroid (see Hakimi [20] and the references
therein). It is easy to see that the former result carries over to the case of vertex and
edge demand, while the latter does not, i.e. there exist tree networks with vertex and
edge demand without a (1|1)-centroid located in a vertex. Consider, for example, Figure
1 with π(u) = π(v) = 0 and λ(uv) = δ(uv) = 1.

Proposition 1. Let r ≥ 2. Then there always exists a vertex v ∈ V that is an optimal
solution to the continuous, binary (r|1)-centroid problem with vertex and edge demand,
defined on a network N = (V,E, λ).

The proof is straight forward. Assume that the leader locates in an arbitrary point
x /∈ V of the network. Then there exists an (ε-) optimal solution to the corresponding
medianoid problem with two follower’s facilities located infinitesimally close to x such
that the leader’s gain is (arbitrarily close to) 0. Locating the leader’s facility in a vertex
v ∈ V , in contrast, will enforce the corresponding vertex customers to accommodate their
demand at the leader’s facility.

Spoerhase and Wirth [16] derive a finite dominating set for the continuous, binary
(1|p)-centroid problem on tree networks with vertex demand only. They restrict λ :
E → Q+ and π : V → Q+

0 . Thus, they may assume without loss of generality that
the edge lengths and vertex demands are integer numbers (cf. Section 4). The authors
show that there always exists an optimal solution to the leader’s problem, such that the
distance from any of the leader’s facilities to any vertex is an integer number or an integer
number divided by two. Note that this discretization result is not polynomial. While, as
described above, Dasci et al. [14] are able to show that the discretization result by Megiddo
et al. [31] almost directly applies when additionally considering edge demand, the same is
implausible for the finite dominating set just described for the continuous, binary (1|p)-
centroid problem on tree networks. Consider, for instance, a chain network N = (V,E, λ)
with V = {1, 2, 3}, E = {[1, 2], [2, 3]}, δ([1, 2]) = 1, δ([2, 3]) = 2, λ([1, 2]) = λ([2, 3]) = 1
and π(1) = π(2) = π(3) = 0. It is easy to see that the unique (1|1)-centroid x is located
on edge [2, 3] with d(1, x) = 1.25. Moreover, Spoerhase and Wirth [16] show that, on a
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chain network, the continuous version of the binary (r|p)-centroid problem with vertex
demand only is NP-hard, while the discrete version is not. Hence, they conjecture that
a polynomial finite dominating set is unlikely to exist for the continuous, binary (r|p)-
centroid problem on general networks with vertex demand only. This holds for the case
of vertex and edge demand as well. Hence, we leave the question of whether or not there
exists a more general discretization result than the one given in Proposition 1 for future
research and turn our attention to the discrete problem class.

4. An algorithm for the discrete, binary (1|p)-centroid problem on tree net-
works with vertex and edge demand

Before describing the algorithm itself in Section 4.2, we will introduce the basic ideas
by restricting our attention to chain networks in Section 4.1. We impose an additional
assumption on the networks under consideration, i.e. we assume λ : E → Q+, δ : E → Q+

0

and π : V → Q+
0 . As a direct consequence, we may assume without loss of generality

that the edge lengths, demand densities and vertex demands are integer numbers for
the remainder of this paper: Let all edge lengths, demand densities and vertex demands
be expressed as fractions of two integers and define c to be the least common multiple
of their denominators. Then we can transform N into a network N ′ = (V,E, λ′) with
λ′(uv) = cλ(uv), δ′(uv) = cδ(uv) for all [u, v] ∈ E and π′(u) = c2π(u) for all u ∈ V
without changing the ratio of the market shares of leader and follower for any feasible
location setting.

4.1. Chain networks

Consider a chain network N = (V,E, λ) with vertex set V = {u1, ..., un} and edge
set E = {[ui, ui+1]|i = 1, ..., n − 1} (see Figure 6). Global variables x and t allow the
definition of any point of the chain network. For the sake of notational convenience, we
will denote the vertices by natural numbers, i.e. i instead of ui, whenever possible. The
distinction of vertex numbers and distinct values of the global variables x and t will, in
general, become clear from the context.

1 2

1 2

([ u ,u ]),

([ u ,u ])




u1 u2 ui ui+1 un-1 un

1(u ) 2(u ) i(u ) i 1(u )  n 1(u )  n(u )

x,t

i i 1

i i 1

([ u ,u ]),

([ u ,u ])









n 1 n

n 1 n

([ u ,u ]),

([ u ,u ])









Figure 6: Chain network.

We define

f(x) :=
∑

i∈V,d(1,i)<x

π(i) +

x∫
0

δ(t)dt, (29)

where δ(t) := 0 for all t < 0 and t > d(1, n).
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This results in

f(x) =



0 if x ≤ 0,

π(1) + δ([1, 2])x if 0 < x ≤ d(1, 2),
...

...
u−2∑
i=1

[δ([i, i+ 1])λ([i, i+ 1]) + π(i)]

+ π(u− 1) + δ([u− 1, u])(x− d(1, u− 1))

if d(1, u− 1) < x ≤ d(1, u),

...
...

n−2∑
i=1

[δ([i, i+ 1])λ([i, i+ 1]) + π(i)]

+ π(n− 1) + δ([n− 1, n])(x− d(1, n− 1))

if d(1, n− 1) < x ≤ d(1, n),

n−1∑
i=1

[δ([i, i+ 1])λ([i, i+ 1]) + π(i)] + π(n) if x > d(1, n).

(30)

Note that, after applying a simple preprocessing procedure of linear time complexity,
one can evaluate f(x) in constant time for any x. Figure 7 gives an example.

f(x)

30

15

3 4 5 6

(1) 4 

([1,2 ]) 1,

([1,2 ]) 2








1 2

(6 ) 2 (5 ) 1 (4 ) 3 (3 ) 2 (2 ) 1 

([ 2,3 ]) 2,

([ 2,3 ]) 1









([ 3,4 ]) 2,

([ 3,4 ]) 3









([ 4,5 ]) 1,

([ 4,5 ]) 1









([ 5,6 ]) 3,

([ 5,6 ]) 2







 x

Figure 7: Function f(x).

Let the leader’s locations be the vertices j and k with j ≤ k and let the follower’s
location be vertex i 6= j, k. Then we can easily determine an open interval ]a, b[ with
a < b and a, b ∈ [0, d(1, n)] of customers, who accommodate their demand at the follower’s
facility:

a =


0 if i < j,
1
2
(d(1, j) + d(1, i)) if j < i < k,

1
2
(d(1, k) + d(1, i)) if i > k,

(31)
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b =


1
2
(d(1, j) + d(1, i)) if i < j,

1
2
(d(1, k) + d(1, i)) if j < i < k,

d(1, n) if i > k.

(32)

The customers located at a and b have to be considered separately, so that the follower’s
market share can be calculated as follows:

WF (i|j, k) =


f(b)− f(a) if i < j,

f(b)− f(a)− π(a) if j < i < k,

f(b)− f(a)− π(a) + π(n) if i > k.

(33)

Thus, we can state:

Lemma 2. The problem of finding a discrete, binary (1|X2)-medianoid of a chain network
N = (V,E, λ) with vertex and edge demand can be solved in linear time O(n).

Proof. An algorithm is as follows. It determines (not necessarily all) (1|X2)-medianoids,
stored in Y , as well as the corresponding market share of the follower, ξ∗s .

Algorithm 4.1 discrete, binary (1|X2)-medianoid of chain network with vertex and edge
demand

1: Y := ∅
2: ξs := 0, ξ∗s := 0
3: for i = j − 1 to k + 1, i 6= j, i 6= k, i 6= 0, i 6= n+ 1 do
4: ξs = WF (i|j, k) (Equations (31)-(33))
5: if ξs > ξ∗s then
6: Y = {i}
7: ξ∗s = ξs
8: else if ξs = ξ∗s then
9: Y = Y ∪ {i}

10: end if
11: end for
12: if Y = ∅ then
13: Y = Y ∪ {1}
14: end if

We are now able to derive an efficient algorithm for the centroid problem by combining
Algorithm 4.1 and the definition of ξ̂-bounding sets, presented by Spoerhase and Wirth
[16] for the case of vertex demand only (see section 2). To this end we add an artificial
vertex n+ 1 with π(n+ 1) = 0 and an artificial edge [n, n+ 1] with λ([n, n+ 1]) =∞ and
δ([n, n+ 1]) = 0 to the chain network.

Lemma 3. Let 0 < p ≤ n with p ∈ N and 0 ≤ ξ̂ ≤ ξ(N) with ξ̂ ∈ R. If, for a chain
network N = (V,E, λ) with vertex and edge demand, there exists a ξ̂-bounding set with at
most p elements, we can determine one such set (or decide that there is no such set) in
O(n2) time.
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Proof. Observe that the cases ξ̂ = 0 and ξ̂ = ξ(N) are trivial, i.e. we can easily decide
if a ξ̂-bounding set exists and if so, it is a simple matter to find such a set. Hence, we
assume 0 < ξ̂ < ξ(N) in the following.

Algorithm 4.2 determines a set X of at most p elements that form a ξ̂-bounding set in
the proposed running time. If there is no such set, the algorithm terminates with X = ∅.

Algorithm 4.2 ξ̂-bounding set X with |X| ≤ p of chain network with vertex and edge
demand

1: X := ∅
2: ξs := π(1) + 1

2
δ([1, 2])λ([1, 2])

3: i := 2
4: while ξs ≤ ξ̂ and i ≤ n− 1 do
5: i = i+ 1
6: ξs = ξs + 1

2
δ([i− 2, i− 1])λ([i− 2, i− 1]) + π(i− 1) + 1

2
δ([i− 1, i])λ([i− 1, i])

7: end while
8: if i = n and ξs ≤ ξ̂ then
9: X := X ∪ {i}

10: else
11: X = X ∪ {i− 1}
12: end if
13: while |X| ≤ p and i ≤ n do
14: ξs = 0
15: while ξs ≤ ξ̂ and i ≤ n do
16: i = i+ 1
17: Call Algorithm 4.1 on subnetwork N ′ with vertex set V ′ = {max{l|l ∈ X}, ..., i}

and j = max{l|l ∈ X}, k = i. It results in ξ∗s and a set Y .
18: ξs = ξ∗s
19: end while
20: if ξs > ξ̂ then
21: X = X ∪ {i− 1}
22: end if
23: end while
24: if |X| = p+ 1 then
25: X := ∅
26: end if

Obviously, the set of all (1|p)-centroids of a chain network with follower gain ξ̂ contains
all ξ̂-bounding sets with at most p elements. Thus, we may state the main result of this
section:

Theorem 5. The problem of finding a discrete, binary (1|p)-centroid of a chain net-
work N = (V,E, λ) with vertex and edge demand can be solved with time complexity
O(n2 log ξ(N)).
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Proof. We apply bisection on the interval [0, ξ(N)] to find the smallest value ξ̂ such that
a ξ̂-bounding set with at most p elements exists. Observe that (due to the additional
assumption in Section 4) we can terminate the bisection method when |ξbest−ξnobs| < 0.5,
where ξbest corresponds to the follower’s market share in the best feasible solution found
so far, and ξnobs corresponds to the largest demand level in an iteration of the bisection
method that resulted in the nonexistence of a ξnobs-bounding set with at most p elements.
This results in the proposed running time.

4.2. General tree networks

Suppose that the given network N = (V,E, λ) is a tree network with vertex set
V = {u1, ..., un} and edge set E. We will denote the vertices by natural numbers, i.e. i
instead of ui, whenever possible. As in the case of a chain network, the set of all (1|p)-
centroids of a tree network with follower gain ξ̂ contains all ξ̂-bounding sets with at most
p elements. As we will show in the following, we can extend the ideas presented in Section
4.1 to determine a discrete, binary (1|p)-centroid of a tree network.

Add an artificial vertex n + 1 with π(n + 1) = 0 as the root of N and connect it
to an arbitrary vertex s ∈ V by an artificial edge [s, n + 1] with λ([s, n + 1]) = ∞
and δ([s, n + 1]) = 0. A ξ̂-bounding set with at most p elements can be determined by
performing a depth first search traversal of the tree network (cf. Spoerhase and Wirth
[16]).

Algorithm 4.3 ξ̂-bounding set X with |X| ≤ p of tree network with vertex and edge
demand

1: X := ∅
2: Perform a depth first search traversal of the tree network, starting at the artificial

vertex n+1. Whenever the search tracks back from vertex v to vertex u, solve a (1|Xp̂)-
medianoid problem on theX-subtracted subtree rooted in u withXp̂ = (X∩VXs)∪{u}.
If the follower’s optimal market share exceeds ξ̂, set X = X ∪ {v}.

3: if |X| > p then
4: X = ∅
5: end if

Suppose for now that we have an appropriate algorithm to solve discrete, binary
(1|Xp)-medianoid problems on tree networks at hand. Then the main idea of how to find
a discrete, binary (1|p)-centroid is in analogy to Section 4.1, i.e. we apply bisection on
the interval [0, ξ(N)] to find the smallest value ξ̂ such that a ξ̂-bounding set with at most
p elements exists. The following example illustrates this basic idea. Suppose we want
to solve a (1|2)-centroid problem on the tree network depicted in Figure 8, with all edge
lengths, demand densities and vertex demands equal to one. We arbitrarily choose s = 1.
Figure 9 highlights and numbers all the subtrees that we will have to consider in the
solution process. Shaded vertices represent leader’s facilities. Table 2 lists corresponding
optimal solutions to the medianoid problems.
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Figure 9: Example - subtrees.
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Table 2: Example - optimal solutions to the medianoid problems.

Subnetwork 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Opt. solution {5} {4} {6} {3} {2} {11} {10} {9} {8} {13} {12} {17} {18} {16} {15} {14} {7} {s} {7} {s}
Follower gain 1.5 3.5 1.5 7.5 9.5 1.5 3.5 5.5 7.5 1.5 3.5 1.5 1.5 5.5 7.5 9.5 23.5 11.5 14 1

Table 3 walks through the solution process as described above. The termination
criterion, ξ̂7 − ξ̂6 < 0.5, is applicable due to the integrality of the edge lengths, vertex
demands and demand densities (see below).

Table 3: Example - solving the centroid problem.

Bisection method Algorithm 4.3: subnetworks under consideration Bounding set

ξ̂1 = 0.5ξ(N) = 17.5
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 → X = {7}

X = {7}
18

ξ̂2 = 8.75

1, 2, 3, 4, 5 → X = {2}

X = ∅
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 → X = {2, 14}
19 → X = {2, 7, 14}
20 → |X| > 2

ξ̂3 = 13.125
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 → X = {7}

X = {7}
18

ξ̂4 = 10.9375
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 → X = {7}

X = {1, 7}
18 → X = {1, 7}

ξ̂5 = 9.84375
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 → X = {7}

X = {1, 7}
18 → X = {1, 7}

ξ̂6 = 9.296875

1, 2, 3, 4, 5 → X = {2}

X = ∅
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 → X = {2, 14}
19 → X = {2, 7, 14}
20 → |X| > 2

ξ̂7 = 9.5703125
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 → X = {7}

X = {1, 7}
18 → X = {1, 7}

STOP (ξ̂7 − ξ̂6 < 0.5)

X2 = {1, 7} is a (1|2)-centroid

Hence, the medianoid problems to be solved are of a special structure (Figure 9):
The leader’s facilities are solely located in leaves and roots of subtrees of the original
network. We will now describe an algorithm to optimally solve those special structure
(1|Xp̂)-medianoid problems. It results in the following lemma.

Lemma 4. Let N̂ = (V̂ , Ê, λ̂), |V̂ | = n̂, be a rooted tree network with vertex and edge
demand. Moreover, let Xp̂ ⊆ L̂∪{r̂}, Xp̂∩{r̂} 6= ∅, where L̂ denotes the set of leaves and
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r̂ corresponds to the root of the tree network with degree 1. Then the problem of finding a
discrete, binary (1|Xp̂)-medianoid can be solved with time complexity O(n̂p̂).

The algorithm is composed of six stages.

1. Collapse, O(n̂)

2. Label, O(n̂)

3. Rearrange, O(p̂2)

4. Construct chain functions, O(n̂p̂)

5. Calculate distances of facilities in Xp, O(p̂2)

6. Evaluate, O(n̂p̂)

In the following we will describe each of the six stages in detail. We denote the elements
of the set Xp̂ by xi, i = 1, ..., p̂, where, without loss of generality, x1 corresponds to the
leader’s facility located in the root r̂.

Collapse: Consider a leaf x /∈ Xp̂ and let x′ 6= r̂ be the father of x. It is easy to see that
WF (x|Xp̂) ≤ WF (x′|Xp̂). Therefore, we may construct an auxiliary tree network N ′ by
merging x and x′ to define a vertex vx,x′ with π(vx,x′) = π(x) + π(x′) + λ([x′, x])δ([x′, x])
to replace x′. Any (1|Xp̂)-medianoid on N ′ corresponds to a (1|Xp̂)-medianoid on N .
The transformation is straight forward: Let vx,x′ be an optimal solution to the (1|Xp̂)-
medianoid problem on N ′; then x′ is the corresponding (1|Xp̂)-medianoid on N . This
idea of merging vertices can be repeated until every leaf of the resulting auxiliary tree
network is either a child of r̂ or an element of Xp̂. This can be achieved by performing a
depth first search traversal of the tree network of time complexity O(n̂). An example with
Xp̂ = {x1, x2, x3, x4, x5} is given in Figure 10. Since vertex 13 is a leaf without being a
leader’s location, we may merge vertices 13 and 12. The resulting vertex can subsequently
be merged with vertices 11 and 6.

Observe that for p̂ ≤ 2 we are left with a chain network (see Section 4.1). Therefore,
in what follows, we will restrict our attention to the nontrivial case p̂ > 2. Moreover, to
ease notation, we will omit the superscript ′ when referring to the collapsed tree network
and its vertex set, i.e. we will keep using the notation that has been introduced in Lemma
4.

Label: It is well known that the vertices of a tree network can be labeled in linear
time such that hereafter the nearest common ancestor of any pair of vertices as well as
their distance can be computed in constant time. See, for example, Alstrup et al. [32] and
the references therein.

Rearrange: This stage aims at finding a permutation [xµ1 , ..., xµp̂−1
] of the elements

xi, i = 2, ...p̂. Roughly speaking, this permutation is such that the customers located on
the unique path that connects a superordinated vertex of the permutation to the root
are guaranteed not to accommodate their demand at a leader’s facility located at a sub-
ordinated element of the permutation (or to be indifferent about accommodating their
demand at one of the two corresponding leader’s facilities). Additionally, in combination
with the subsequent stages of the algorithm, the permutation eventually guarantees that
each customer accommodates his demand at a single facility by grouping the leader’s facil-
ities according to their nearest common ancestors. The permutation is being determined
by applying a three stage algorithm:
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Figure 10: Collapsing stage.

1. Calculate d(r̂, xi) for all i = 2, ...p̂ by use of the vertex labels (Stage 2) (time
complexity O(p̂)).

2. Sort the elements xi, i = 2, ...p̂, in the order of increasing distances d(r̂, xi). We
may, for example, apply mergesort (time complexity O(p̂ log p̂), cf. Cormen et al.
[33]). The sorting algorithm results in an array L of length p̂− 1 with the smallest
element in the first position, denoted by L[1].

3. Call Algorithm 4.4 to determine the desired permutation P . We denote the i-th
position of the permutation P by P [i]. Using a linked list data structure, the
algorithm has time complexity O(p̂2).

Algorithm 4.4 Generate rearranged facilities.

1: initialize P
2: pos := 0, lastpos := 2, depth := 0
3: P [1] = L[1], P [2] = L[2]
4: for i = 3 to p̂− 1 do
5: pos = 0
6: depth = d(r̂, nca(L[i], P [1]))
7: for j = 2 to lastpos do
8: if d(r̂, nca(L[i], P [j])) > depth then
9: depth = d(r̂, nca(L[i], P [j]))

10: pos = j + 1
11: end if
12: end for
13: if pos = 0 then
14: if d(r̂, nca(L[i], P [1])) > d(r̂, nca(L[i], P [2])) then
15: pos = 2
16: else
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17: pos = lastpos+ 1
18: end if
19: end if
20: P [pos] = L[i]
21: lastpos = lastpos+ 1
22: end for

Let us denote the unique path that connects xµj to the root r̂ by cµj for each j =
1, ..., p̂ − 1. Then the three stage rearranging process is such that for any pair k, l ∈
{1, ..., p̂ − 1} with k < l there exists a µm, m ≤ k such that d(xµm , z) ≤ d(xµl , z) for all
points z on cµk , even if d(xµl , r̂) < d(xµk , r̂).

We conclude by revisiting the example of Figure 10b in Table 4.

Table 4: Rearranging stage for the example in Figure 10b.

Steps 1 and 2: distances: sorted distances:

i 2 3 4 5

d(r̂, xi) 5 4 3 5

i 4 3 2 5

d(r̂, xi) 3 4 5 5

Alg. 4.4, initialization: L = [x4, x3, x2, x5] P = [x4, x3]

Alg. 4.4, i = 3: insert x2:

nca(x4, x2) = 1, d(r̂, 1) = 1

nca(x3, x2) = 2, d(r̂, 2) = 3 P = [x4, x3, x2]

Alg. 4.4, i = 4: insert x5:

nca(x4, x5) = 6′, d(r̂, 6′) = 2

nca(x3, x5) = 1, d(r̂, 1) = 1

nca(x2, x5) = 1, d(r̂, 1) = 1 P = [x4, x5, x3, x2]

When inserting x2, the algorithm compares the “depth” of the nearest common an-
cestors of x2 and the facilities x4 and x3 in the tree network. Since the latter nearest
common ancestor is located deeper in the network, x2 is inserted after x3. Similarly, x5
needs to be paired with facility x4. Thus, the procedure terminates with xµ2 = x5 and
xµ3 = x3 although d(r̂, x3) = 4 < d(r̂, x5) = 5 because x4 will always be closer to any
point on chain [r̂, 1, 6′, 8, 9, 10] than x3.

Construct chain functions: As in the case of chain networks (Section 4.1), we can
now define “chain functions” fµi(yµi) for all i = 1, ..., p̂− 1, where yµi are local variables
that correspond to the distance of a point on chain cµi to the root r̂ of the collapsed tree
network. In the following we will denote the vertices of a chain cµi in the sequence of

increasing distance to the root r̂ by v1µi , ..., v
lµi+1
µi , where lµi is the number of edges on the

unique path from r̂ to xµi . In contrast to Section 4.1 we will now have to assign each
vertex/edge customer to a unique chain. We do so by considering the permutation P that
results from the rearranging stage. For any i > 1, we denote the vertex nca(xµi−1

, xµi) by
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vsµi , where 1 ≤ s ≤ lµi , and we define

fµi(yµi) :=



0 if yµi ≤ d(r̂, vsµi),

δ([vsµi , v
s+1
µi ])(yµi − d(r̂, vsµi)) if d(r̂, vsµi) < yµi ≤ d(r̂, vs+1

µi ),
...

...
u−1∑
j=s

[δ([vjµi , v
j+1
µi ])λ([vjµi , v

j+1
µi ]) + π(vjµi)]

− π(vsµi) + π(vuµi)

+ δ([vuµi , v
u+1
µi ])(yµi − d(r̂, vuµi))

if d(r̂, vuµi) < yµi ≤ d(r̂, vu+1
µi ),

...
...

lµi−1∑
j=s

[δ([vjµi , v
j+1
µi ])λ([vjµi , v

j+1
µi ]) + π(vjµi)]

− π(vsµi) + π(v
lµi
µi )

+ δ([v
lµi
µi , v

lµi+1
µi ])(yµi − d(r̂, v

lµi
µi ))

if d(r̂, v
lµi
µi ) < yµi ≤ d(r̂, v

lµi+1
µi ),

lµi∑
j=s

[δ([vjµi , v
j+1
µi ])λ([vjµi , v

j+1
µi ]) + π(vjµi)]

− π(vsµi) + π(v
lµi+1
µi )

if d(r̂, v
lµi+1
µi ) < yµi .

(34)

For i = 1 we define vsµ1 := r̂ and fµ1(yµ1) in analogy to equation (30).
A simple O(n̂p̂) procedure to construct the chain functions determines the chains cµi

for all i = 1, ..., p̂ − 1 by performing a depth first search traversal of the collapsed tree
network and, afterwards, generates the needed coefficients by considering all edges of the
collapsed tree network at most p̂ times. After having constructed a chain function cµi , we
can evaluate it in constant time for a given yµi .

For our example, the chain functions fµ1(yµ1), ..., fµ4(yµ4) for P = [x4, x5, x3, x2] are
depicted in Figure 11. Since, for instance, nca(x4, x5) = 6′, we have fx5(yx5) = 0 for
all yx5 ≤ d(r̂, 6′). Hence, the vertex demand of the vertices r̂ and 1 as well as the edge
demand of the edges [r̂, 1] and [1, 6′] is uniquely assigned to chain cx4 .

Calculate distances of facilities in Xp: Determine

D(xµi) := min{d(r̂, xµi),min{d(xµi , xµj)|j < i}} (35)

for all i = 2, ..., p̂−1 and denote one of the corresponding vertices by V (D(xµi)). This can
obviously be achieved in O(p̂2) time. Moreover, we equivalently define D(xµ1) := d(r̂, xµ1)
and V (D(xµ1)) := r̂. The example is revisited in Table 5.

Evaluate: Consider a vertex v ∈ V \{Xp̂} of the collapsed tree network as a potential
follower’s location and let k = min{i|v is a vertex on chain cµi , i ∈ {1, ..., p̂ − 1}}. Then
we can easily determine an open interval ]acµj , bcµj [ with acµj ≤ bcµj of customers who
accommodate their demand at v for each chain cµj , j = 1, ..., p̂− 1 in analogy to Section
4.1.
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Figure 11: Functions fµi
(yµi

), i = 1, ..., 4, for the example in Figure 10b.

Table 5: D(xµi
) and V (D(xµi

)), i = 1, ..., 4, for the example in Figure 10b.

i 1 2 3 4

xµi x4 x5 x3 x2

D(xµi) 3 4 4 3

V (D(xµi)) r̂ 7 r̂ 5
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• For all cµj with j > k:

acµj = 0, (36)

bcµj =

{
d(r̂, xµj)−

d(v,xµj )

2
if d(v, xµj) < D(xµj),

0 else.
(37)

• For all cµj with j < k, j 6= 1:

acµj =

{
d(r̂, v)− d(V (D(xµj )),v)

2
if d(r̂, v) < d(r̂, xµj) and d(xµj , v) < D(xµj),

0 else,
(38)

bcµj =

{
d(r̂, xµj)−

d(v,xµj )

2
if d(r̂, v) < d(r̂, xµj) and d(xµj , v) < D(xµj),

0 else.
(39)

• For cµk :

acµk = d(r̂, v)− d(V (D(xµk)), v)

2
, (40)

bcµk =
d(r̂, xµk) + d(r̂, v)

2
. (41)

• For cµ1 , if k 6= 1:

acµ1 =

{
d(r̂,v)

2
if d(r̂, v) < d(r̂, xµ1) > d(v, xµ1),

0 else,
(42)

bcµ1 =

{
d(r̂, xµ1)−

d(v,xµ1 )

2
if d(r̂, v) < d(r̂, xµ1) > d(v, xµ1),

0 else.
(43)

Observe that there might exist points of the collapsed tree network that are contained
in multiple intervals ]acµj , bcµj [, j ∈ {1, ..., p̂− 1}. However, by definition of equation (34)

and fµ1(yµ1), only one of the corresponding chain functions fµj(yµj) may have a value
larger than zero at each of these points, so that the related demand will only be considered
once in the subsequent calculation of the actual follower’s market share WF (v|Xp̂). In
analogy to Section 4.1 we get

WF (v|Xp̂) =

p̂−1∑
j=1

W
cµj
F (v|Xp̂), (44)

where

W
cµj
F (v|Xp̂) =

{
fµj(bcµj )− fµj(acµj ) if d(r̂, vsµj) ≥ acµj ,

fµj(bcµj )− fµj(acµj )− π(acµj ) else,
(45)

corresponds to the portion of the total follower’s market share that is induced by chain
cµj for any j ∈ {1, ..., p̂− 1}.
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Equations (36)-(45) can be evaluated in constant time for a given v, so that we are now
able to determine a (special structure) discrete, binary (1|Xp̂)-medianoid with time com-
plexity O(n̂p̂) as claimed in Lemma 4. The following algorithm stores (1|Xp̂)-medianoids
in the set Y ; the corresponding follower’s market share equals W ∗.

Algorithm 4.5 Evaluate.

1: Y := ∅, W := 0, W ∗ := 0
2: for all v ∈ V \ {Xp̂} do
3: W = 0
4: for j = 1 to p̂− 1 do
5: W = W +W

cµj
F (v|Xp̂) (Equations (36)-(45))

6: end for
7: if W > W ∗ then
8: Y = {v}
9: W ∗ = W

10: else if W = W ∗ then
11: Y = Y ∪ {v}
12: end if
13: end for
14: if Y = ∅ then
15: Y = {r̂}
16: end if

Let us consider our example with the follower’s location in vertex v = 6′, i.e. k = 1.
We get acµ1 = 2 − 2/2 = 1, bcµ1 = (3 + 2)/2 = 2.5, acµ2 = 0, bcµ2 = 5 − 3/2 = 3.5,
acµ3 = 0, bcµ3 = 0, acµ4 = 0, bcµ4 = 0 and WF (6′|Xp̂) = 15.5. Analogously, one computes
the follower’s market share when locating in vertex 1, 2, 3, 8 or 9. By comparison of these
values we find vertex 6′ to be the (1|X5)-medianoid.

We may now conclude this section with the main result in Theorem 6.

Theorem 6. The problem of finding a discrete, binary (1|p)-centroid of a tree net-
work N = (V,E, λ) with vertex and edge demand can be solved with time complexity
O(n2p log ξ(N)).

Proof. We apply bisection on the interval [0, ξ(N)] to find the smallest value ξ̂ such that
a ξ̂-bounding set with at most p elements exists. The termination criterion described in
the proof of Theorem 5 can be adapted to the case at hand.

5. Conclusion

In this paper we have analyzed a classical sequential location problem on networks,
the (r|p)-centroid problem under a binary choice rule. Differing from the majority of
previous publications, we have considered networks with both, vertex and edge demand.
The corresponding follower problem is known to be NP-hard even on networks with edge
demand only [14]. We have proven that this remains true for the (r|p)-centroid prob-
lem. On tree networks, however, an efficient algorithm to determine a (1|p)-centroid has
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been derived, after having restricted the location sites to the vertex set of the underlying
network (discrete problem class). Bilevel programming models have been presented for
the discrete (r|p)-centroid problem on general networks with vertex and edge demand.
Computational results based on these models indicate, that heuristics will need to ap-
proximate the follower’s response to a given set of leader’s locations. An upper bound on
the follower’s optimal market share has previously been introduced for the case of vertex
demand only. We have shown that this bound can be adapted to the case of vertex and
edge demand. Future research topics (cf. also Section 3.4) include the application of non-
uniform demand densities or different types of choice rules, as, for example, proportional
or partially binary choice rules.

Appendix A. Computational results

Note: “-” marks trivial instances with r + p ≥ n.

Table A.6: Computational results - Model BBNP with fixed set of leader’s locations, p = 1.

avg. comp. time instances not solved to optimality

r # of vertices [sec.] # average gap [%]

1

5 0.0188 0 0
10 0.1062 0 0
15 0.3963 0 0
20 1.0048 0 0
25 2.6973 0 0

2

5 0.0967 0 0
10 0.4306 0 0
15 1.5272 0 0
20 3.9342 0 0
25 11.8092 0 0

3

5 0.0361 0 0
10 0.2915 0 0
15 6.0265 0 0
20 28.1928 0 0
25 202.638 0 0

4

5 - - -
10 0.4084 0 0
15 35.2106 0 0
20 297.308 0 0
25 1424.61 4 29.05

Table A.7: Computational results - Model BBNP with fixed set of leader’s locations, p = 2.

avg. comp. time instances not solved to optimality

r # of vertices [sec.] # average gap [%]

1

5 0.0157 0 0
10 0.0875 0 0
15 0.2605 0 0
20 0.6396 0 0
25 2.0358 0 0

2

5 0.0188 0 0
10 0.0828 0 0
15 0.3199 0 0
20 1.0142 0 0
25 4.7645 0 0

3

5 - - -
10 0.1014 0 0
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15 0.5302 0 0
20 2.672 0 0
25 19.9147 0 0

4

5 - - -
10 0.1329 0 0
15 1.2654 0 0
20 10.329 0 0
25 114.313 0 0
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