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Abstract In this paper we analyze the effect of including price competition into a classical
(market entrant’s) competitive location problem. The multinomial logit approach is applied
to model the decision process of utility maximizing customers. We provide complexity re-
sults and show that, given the locations of all facilities, a fixed-point iteration approach that
has previously been introduced in the literature can be adapted to reliably and quickly deter-
mine local price equilibria. We present examples of problem instances that demonstrate the
potential non-existence of price equilibria and the case of multiple local equilibria in prices.
Furthermore, we show that different price sensitivity levels of customers may actually affect
optimal locations of facilities, and we provide first insights into the performance of heuristic
algorithms for the location problem.

Keywords Facility location · Competition · Price competition · Multinomial logit ·
Medianoid problem

1 Introduction

Ever since the seminal work of Hotelling (1929), competitive location models have been
intensively studied in the economic and operations research literature. This is reflected in the
large amount of review articles and special issues that have appeared over the past decades,
such as Drezner (1995); Eiselt and Laporte (1996); Eiselt et al (1993); Friesz (2007); Kress
and Pesch (2012b); Plastria (2001); Santos-Peñate et al (2007); Serra and ReVelle (1995).
Essentially, one seeks to locate (physical or nonphysical) facilities in some given space with
respect to some objective function, incorporating the fact that location decisions have been
or will be made by independent decision-makers (players) who will subsequently compete
with each other.

A well known competitive location problem, formally introduced by Hakimi (1983), is
the (r|Xp)-medianoid problem. Here, given a network with customers located in the vertices
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and a predefined set of p leaders’s (or incumbent’s) facilities Xp, a follower (or entrant)
wants to enter the market with a given number of r facilities so that the market share is
maximized. When restricting the set of potential facility sites to the vertex set of the net-
work, this problem is sometimes referred to as the maximum capture problem (MAXCAP,
ReVelle, 1986) or discrete (r|Xp)-medianoid problem. Obviously, when players compete
for market share, the researcher needs to apply some kind of customer choice model. Typ-
ically, as in Hakimi (1983), customer choice is assumed to be binary, i.e. it is assumed to
be deterministic from the perspective of the players with the total demand of each customer
being served by a single facility. For example, one may suppose that customers patronize the
closest facility only.1 Fernández et al (2007) and Benati and Hansen (2002), among others,
deviate from this assumption. In the latter paper, the authors introduce the maximum capture
problem with random utilities. Here, probabilistic customer behavior is modeled by random
utility functions that are composed of deterministic and stochastic components. They select
the multinomial logit approach, which is well established in the economics, marketing and
operations research literature (see, for example, Anderson et al, 1992; Hensher et al, 2005;
Train, 2003), to model the decision process of utility maximizing customers. In their defini-
tion of the deterministic component, the authors focus on incorporating effects of distances
from customers to facility locations. An overview of other location models utilizing proba-
bilistic choice models can be found in the review papers mentioned above. Braid (1988) and
Chisholm and Norman (2004), for instance, consider the choice of locations of two or more
(single-product or multiple-product) firms on small chain networks under the multinomial
logit model.

As Hotelling (1929) considers not only location, but also price decisions, another stream
of research focuses on the incorporation of price competition into competitive location mod-
els. The majority of these models is concerned with one-dimensional location spaces (see
Kress and Pesch, 2012b, for a recent overview). For example, de Palma et al (1985) con-
sider equilibrium locations of two or more firms along a line segment with uniformly spread
customers with and without price competition under the multinomial logit model. Another
related example is Lederer (2003). Fik and Mulligan (1991), Fik (1991) and Braid (1993)
are examples of (economic) models of spatial competition that consider network structures
with discrete and continuous (customers are dispersed over the edges of the network) de-
mand distributions. Serra and ReVelle (1999) consider the maximum capture problem on
networks under a binary choice rule, where players are allowed to compete in prices after
having chosen locations.

As proposed by Benati and Hansen (2002), this paper contributes to the literature by
applying the idea of competition in prices to the maximum capture problem with random
utilities in order to “improve the realism of the model”. Hence, our research is closely re-
lated to de Palma et al (1985). Related models can also be found in the field of product
positioning, cf. Choi et al (1990) and Rhim and Cooper (2005). We additionally contribute
to the literature by providing complexity results for the resulting location problem. In order
to compute equilibrium prices under multinomial logit demand, we adapt a fixed-point iter-
ation approach that has previously been introduced in the literature by Morrow and Skerlos
(2011) (cf. also Morrow, 2008). In this context, we present examples of problem instances
with fixed location sets of the players, that demonstrate the potential non-existence of price
equilibria and the case of multiple local equilibria in prices. Finally, we show that differ-
ent price sensitivity levels of customers may actually affect optimal locations of facilities,

1 Additionally, a tie breaking criterion is needed.
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and we provide first insights into the performance of heuristic algorithms for the location
problem.

This paper proceeds as follows. First, we introduce the basic notation and definitions
in Section 2. A detailed problem formulation is given in Section 3 with results concerning
the existence of price equilibria and the computational complexity in Subsections 3.1 and
3.2, respectively. In Section 4 we are concerned with the aforementioned fixed-point itera-
tion approach (Subsection 4.1), example instances (Subsection 4.2) and some computational
tests (Subsection 4.3). Heuristic approaches for solving the location problem are subject of
Section 5. The paper closes with a conclusion in Section 6.

2 Notation and definitions

In the course of this paper we assume the reader to be familiar with the basic concepts of
graph theory (see, for example, Gross and Yellen, 2004; Swamy and Thulasiraman, 1981)
and game theory. We refer to Fudenberg and Tirole (1991) for an excellent introduction to
the latter topic.

We use the graph theoretic notation of Bandelt (1985); Bauer et al (1993); Kress and
Pesch (2012a). Hence, we will denote a network by N = (V,E,λ ), with V (|V | = n) being
the (finite) vertex set and E (|E| = m) being the (finite) edge set of the underlying graph.
The mapping λ : E→R+ defines the lengths of the network’s edges. An edge e ∈ E joining
two vertices u and v is denoted by e = [u,v]. We assume that the networks considered in this
paper are undirected, connected and that there are no multiple edges. Moreover, we assume
that there are no loops at the vertices. We denote the length of a shortest path (distance)
connecting two vertices x and y of a network by d(x,y) = dxy.

We will consider games in strategic form that have three basic elements (Fudenberg and
Tirole, 1991, p. 4): A set of players Θ which we assume to be finite (Θ = {1, ...,θ}), a
(pure) strategy space Ψi for each player i ∈Θ , and a payoff function ui(ψψψ) for each player
i ∈Θ that assigns a utility level to every vector of strategies ψψψ = (ψ1, ...,ψθ ), ψi ∈Ψi. A
strategy vector ψψψ

N = (ψN
1 , ...,ψN

θ
) is said to be a Nash equilibrium in pure strategies, if no

player can unilaterally increase his utility, i.e. ui(ψψψ
N)≥ ui(ψi,ψψψ

N
Θ\{i}) for all ψi ∈Ψi, where

ψψψ
N
Θ\{i} = (ψN

j | j ∈Θ , j 6= i) (cf. Gabay and Moulin, 1980).

3 Problem formulation

Consider a network N = (V,E,λ ). A finite number of (homogenous) customers is located
at the vertices of N. At each vertex there may be several customers or none at all. Their
demand is described by a weight function π : V → R+

0 , where π is different from the zero
function. When facing real world data, this weight function will typically have to be derived
via aggregation (Plastria and Vanhaverbeke, 2007). A firm I (incumbent) acts as a monop-
olist with multiple facilities in this spatial market. I’s facilities are located at p > 0 distinct
vertices Xp ⊆ V of the network. A competitor E (entrant) wants to enter the market with
an a priori fixed number of facilities r > 0.2 E’s potential facility sites are restricted to the
vertex set of the network. Hence, E solves a discrete (r|Xp)-medianoid problem. At most

2 An alternative model does not fix the number of facilities in advance, but incorporates fixed setup costs
f j ∈ R+

0 for (potential) facilities j; cf. Benati (2003) for a version of this problem without (explicit) price
competition.
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two facilities, one of the incumbent’s and one of the entrant’s facilities, may be located at
each vertex. The players are profit maximizing and sell a single homogeneous product. As,
in most markets, the choice of location is usually less flexible than the choice of prices, we
assume that simultaneous price competition occurs after E’s location decisions have been
made. Thus, the game under consideration is composed of multiple stages (see Figure 1, cf.
also Rhim and Cooper (2005)). In the first stage, E decides on the locations Yr ⊆ V of the
facilities. In the second stage, both players simultaneously decide on a (mill) price for the
product. This stage – as characterized by Eiselt et al (1993) – is a noncooperative game in
which the strategies are prices and payoffs are profits. A solution to this stage is a pure strat-
egy Nash equilibrium in prices, assuming that such an equilibrium exists. After the prices
have been set, customers accommodate their demand and market shares are established.

Location
stage

Pricing
stage

pI , pE

Nash
equilibrium Sales

Yr ,Xp pI , pE

Profits Market shares

Fig. 1 Stages of the game

The utility uq
i j of a customer located in vertex i∈V from patronizing a facility located in

vertex j ∈ V and belonging to player q ∈ {I,E} is composed of a deterministic component
vq

i j and a stochastic component ε
q
i j, the latter being related to unobservable, utility affecting

factors:
uq

i j = vq
i j + ε

q
i j. (1)

Based on Benati and Hansen (2002), we define

vq
i j := aq

j −αdi j−β pq, (2)

where

– aq
j ∈ R is the player-specific (index q) average quality level associated with a facility

located in vertex j (related to opening hours, size, etc.),
– α ≥ 0 is a scaling parameter for distance (“coefficient of spatial friction”, Benati and

Hansen (2002)),
– β > 0 is a sensitivity parameter for price,
– pq is the unit mill price charged at all of player q’s facilities.

In the remainder of the paper we will simplify the notation by referring to the set of
facilities (choice set) by simply writing Xp∪Yr. For an element l ∈ Xp∪Yr, the appropriate
player q ∈ {I,E} “owning” facility l will always become clear from the context. Then, the
probability Pq

i j that a customer located in vertex i ∈V chooses facility j ∈ Xp∪Yr of player
q is

Pq
i j = Prob(uq

i j > uq̃
ik ∀k ∈ Xp∪Yr,k 6= j).

A closed form expression for Pq
i j can be derived when assuming that the stochastic com-

ponents are independently and identical extreme value distributed (Gumbel distributed) with
the cumulative distribution

F(εq
i j) = e−e

−ε
q
i j/δ

.
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The variance is δ 2π2/6, where δ is a scaling parameter. As δ approaches zero, customer
choices become deterministic. The mean is δγ , where γ is Euler’s constant. For the sake of
notational convenience we define s := 1/δ and assume s > 0. The closed form expression
that one derives after some algebraic transformations corresponds to a well known random
utility model, i.e. the multinomial logit model (see McFadden, 1974; Train, 2003, for more
details):

Pq
i j =

esvq
i j

∑
k∈Xp

esvI
ik + ∑

k∈Yr

esvE
ik
∀ i ∈V, j ∈ Xp∪Yr. (3)

To simplify the notation, let q ∈ {I,E}, and define

Zq :=

{
Xp if q = I,
Yr if q = E.

(4)

Furthermore, define

Λ
q
i := ln

(
∑

k∈Zq

es(aq
k−αdik)

)
∀i ∈V,q ∈ {I,E}, (5)

so that

Pq
i j =

esvq
i j

eΛ I
i −sβ pI + eΛ E

i −sβ pE
∀ i ∈V, j ∈ Xp∪Yr. (6)

As pointed out by Choi et al (1990), this model forces every customer to choose a facil-
ity regardless of prices. Hence, a “no purchase” option with a corresponding deterministic
utility component of zero is included, so that we get

Pq
i j =

esvq
i j

eΛ I
i −sβ pI + eΛ E

i −sβ pE +1
∀ i ∈V, j ∈ Xp∪Yr. (7)

Let cq, q ∈ {I,E}, be the cost of producing one unit of the product at one of player q’s
facilities. Then, given Yr, pE , Xp and pI , the (expected) profit Πq of player q is as follows:

Πq = (pq− cq)∑
i∈V

∑
j∈Zq

π(i)Pq
i j. (8)

Additionally, we will consider an exogenous upper bound (parameter p̄ > max
q∈{I,E}

cq) on

the prices charged by the players. This bound may, for example, correspond to a price-cap
that is imposed by a regulator of the market.

We define the binary variables

yE
j :=

{
1 if E locates a facility in vertex j,
0 else, ∀ j ∈V.
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Then, a mathematical programming formulation for the problem under consideration is as
follows:

max
pI ,pE ,yE

ΠE(pI , pE ,yE) = (pE − cE)∑
i∈V

∑
j∈V

π(i)yE
j (9)

es(aE
j −αdi j−β pE )

eΛ I
i −sβ pI + ∑

k∈V
yE

k es(aE
k −αdik−β pE )+1

subject to pI ∈ argmax
pI

ΠI(pI , pE ,yE) = (pI− cI)∑
i∈V

π(i) (10)

eΛ I
i −sβ pI

eΛ I
i −sβ pI + ∑

k∈V
yE

k es(aE
k −αdik−β pE )+1

,

pE ∈ argmax
pE

ΠE(pI , pE ,yE) = (pE − cE)∑
i∈V

∑
j∈V

π(i)yE
j (11)

es(aE
j −αdi j−β pE )

eΛ I
i −sβ pI + ∑

k∈V
yE

k es(aE
k −αdik−β pE )+1

,

∑
j∈V

yE
j = r, (12)

pI , pE ≤ p̄, (13)

pI , pE ≥ 0, (14)

yE
j ∈ {0,1} ∀ j ∈V. (15)

The objective function (9) corresponds to the entrant’s (expected) profit maximization.
Conditions (10) and (11) enforce a Nash equilibrium in prices, assuming that such an equi-
librium exists. Restriction (12) guarantees that exactly r facility locations are selected. Con-
straints (13), (14), and (15) define the domains of the variables, including the restriction of
the prices by the upper bound p̄

We will refer to problem (9)–(15) as the location-then-price game under a logit as-
sumption and denote it by LPL. We will use index q ∈ {I,E} to refer to the players of LPL
throughout the remainder of this paper. Moreover, given a player q ∈ {I,E}, we will refer to
the opposing player by q̄ := {I,E}\q.

Note that there exists an (endogenous) upper bound on prices even if we set p̄ = ∞,
which is well known for logit choice probabilities (including a no purchase option):

Lemma 1 Even if p̄ = ∞, there exist finite upper bounds on the prices charged by the in-
cumbent and the entrant, i.e. pq < ∞, q ∈ {I,E}.

Proof It is easy to verify that

∂Pq
i j

∂ pq
=−sβPq

i j

(
1− ∑

k∈Zq

Pq
ik

)
, (16)

for all i ∈V and j ∈ Zq, q ∈ {I,E}, as defined in (4).
We have

lim
pq→∞

Πq = ∑
i∈V

∑
j∈Zq

π(i) · lim
pq→∞

pq− cq

(Pq
i j)
−1 .
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Using L’Hospital’s rule for any i ∈V , j ∈ Zq, we get

lim
pq→∞

pq− cq

(Pq
i j)
−1 = lim

pq→∞

1
∂ (Pq

i j)
−1

∂ pq

= lim
pq→∞

1

− 1
(Pq

i j)
2

∂Pq
i j

∂ pq

= lim
pq→∞

1

sβ

(
1

Pq
i j
− ∑k∈Zq Pq

ik
Pq

i j

)
= lim

pq→∞

1

sβ

(
1

Pq
i j
−∑k∈Zq es(aq

k−aq
j−α(dik−di j))

) = 0

because

lim
pq→∞

Pq
i j = lim

pq→∞

es(aq
j−αdi j−β pq)

∑
k∈Xp

es(aI
k−αdik−β pI)+ ∑

k∈Yr

es(aE
k −αdik−β pE )+1

= lim
pq→∞

1

∑
k∈Zq

es(aq
k−aq

j−α(dik−di j))+ c

e
s(aq

j−αdi j−β pq)

= 0,

where we define

c :=


∑

k∈Yr

esvik +1 if q = I,

∑
k∈Xp

esvik +1 if q = E.
(17)

Thus, the players have no incentive to charge infinite prices. This proves the assertion. ut

3.1 Pricing stage: Nash equilibria and local equilibria

In this section, we provide a sufficient condition for the existence of a pure strategy Nash
equilibrium in prices. Similar results are due to Choi et al (1990) and Rhim and Cooper
(2005). Note, however, that their proofs and discussions do not directly apply to the case
r, p > 1.

Observe that Πq, q∈ {I,E}, is negative for any pq < cq. Thus, it is reasonable to assume
that prices are bounded below by the unit production costs, i.e. cq ≤ pq, for the remainder
of this paper. Then we may restrict the player q’s strategy space to the nonempty, compact
and convex interval [cq, p̄].

The following theorem is well known (see, for instance, Fudenberg and Tirole, 1991):

Theorem 1 Let Θ be a nonempty set of players and consider a strategic-form game whose
strategy spaces Ψi, i ∈Θ , are nonempty, compact and convex subsets of an Euclidean space.
If the payoff functions ui are continuous in ψψψ and quasiconcave in ψi, then there exists a
pure strategy Nash equilibrium.

Based on this theorem, a sufficient condition for the existence of a pure strategy Nash
equilibrium in prices can easily be derived. To do so, we will require the payoff functions
Πq, q ∈ {I,E}, to be concave in pq on [cq, p̄]. Hence, for each player, a unique best response
exists for each strategy of the opponent.
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Theorem 2 A sufficient condition for the existence of a pure strategy Nash equilibrium in
prices is

sβ ≤ 2
p̄− cq

(18)

for q ∈ {I,E}.

Proof It is easy to verify that the payoff functions (8) are continuous in [cI , p̄]× [cE , p̄]. In
the following we will derive sufficient conditions for the concavity of the payoff functions
(8) in pq on [cq, p̄].

Define Zq, q ∈ {I,E}, as in (4). From (16), we get

∂ 2Pq
i j

∂ p2
q

= sβPq
i j ∑

k∈Zq

∂Pq
ik

∂ pq
− sβ

∂Pq
i j

∂ pq

(
1− ∑

k∈Zq

Pq
ik

)
, (19)

for all i ∈V and j ∈ Zq, and hence

∂Πq

∂ pq
= ∑

i∈V
∑
j∈Zq

π(i)Pq
i j +(pq− cq)∑

i∈V
∑
j∈Zq

π(i) ·
∂Pq

i j

∂ pq
, (20)

∂ 2Πq

∂ p2
q

= 2 ∑
i∈V

∑
j∈Zq

π(i)
∂Pq

i j

∂ pq
+(pq− cq)∑

i∈V
∑
j∈Zq

π(i) ·
∂ 2Pq

i j

∂ p2
q
. (21)

Πq, q ∈ {I,E}, is concave in pq if

∂ 2Πq

∂ p2
q
≤ 0.

This is guaranteed if

2
∂Pq

i j

∂ pq
+(pq− cq)sβPq

i j ∑
k∈Zq

∂Pq
ik

∂ pq
− (pq− cq)sβ

∂Pq
i j

∂ pq

(
1− ∑

k∈Zq

Pq
ik

)
≤ 0

for all i ∈V and j ∈ Zq. It is easy to see that ∂Pq
i j/∂ pq < 0 for all i ∈V and j ∈ Zq. Thus,

(pq− cq)sβPq
i j ∑

k∈Zq

∂Pq
ik

∂ pq
≤ 0, (22)

for all i ∈V and j ∈ Zq, so that it is sufficient to require

2
∂Pq

i j

∂ pq
− (pq− cq)sβ

∂Pq
i j

∂ pq

(
1− ∑

k∈Zq

Pq
ik

)
≤ 0,

or, equivalently,

2− (pq− cq)sβ

(
1− ∑

k∈Zq

Pq
ik

)
≥ 0,

for all i ∈V and j ∈ Zq. Given (18), the latter inequality holds for all i ∈V and j ∈ Zq, since

0 <

(
1− ∑

k∈Zq

Pq
ik

)
< 1,

for all i ∈V . This proves the claim. ut
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The derivation of a less restrictive existence result, for example by providing a better
upper bound than the one used in (22), is left for future research. Similarly, apart from the
rather trivial uniqueness result of Section 3.2, the “complexity of the demand function pro-
hibits the derivation of a [more general] global uniqueness condition” (Choi et al, 1990),
for example by requiring strict diagonal dominance of the Jacobian of the first order condi-
tions for profit maximization (Gabay and Moulin, 1980). Hence, when conditions (18) do
not hold, we must rely on local conditions for optimality of prices (Morrow, 2008; Morrow
and Skerlos, 2011):

Definition 1 (Morrow (2008)) A price vector p= (pI , pE)∈ [cI , p̄]× [cE , p̄] is called a local
(global) price equilibrium, if element pq is a local (global) maximizer of Πq(pq, p̂q̄) for each
q ∈ {I,E}, where p̂q̄ denotes a fixed price of player q̄.

Note that any global price equilibrium is a pure strategy Nash equilibrium in prices.
Additionally observe that, when conditions (18) hold, any local price equilibrium is a global
price equilibrium.

3.2 Computational complexity

In this subsection we will show that LPL, i.e. problem (9)–(15), is NP-hard.

Lemma 2 Let

sβ ≤ 1
p̄− cq

(23)

for q ∈ {I,E}. Then there exists a unique pure strategy Nash equilibrium in prices with
pI = pE = p̄ for all feasible location settings.

Proof Let q ∈ {I,E} and Zq as defined in (4). We will show that Πq is strictly monotonic
increasing in pq on the interval I = [cq, p̄] if (23) holds. This will prove the claim.

Πq is strictly monotonic increasing on I if

∂Πq

∂ pq
= ∑

i∈V
∑
j∈Zq

π(i)Pq
i j +(pq− cq)∑

i∈V
∑
j∈Zq

π(i) ·
∂Pq

i j

∂ pq
> 0

on I. It is sufficient to require

Pq
i j +(pq− cq)

∂Pq
i j

∂ pq
= Pq

i j− (pq− cq)sβPq
i j

(
1− ∑

k∈Zq

Pq
ik

)
> 0

or, equivalently,

1− (pq− cq)sβ

(
1− ∑

k∈Zq

Pq
ik

)
> 0

for all i ∈V and j ∈ Zq. It is easy to see that this condition holds if we assume (23) to hold.
ut
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The maximum capture problem with random utilities (Benati, 2000; Benati and Hansen,
2002) (MAXCAP-R) is closely related to LPL. The former problem considers stages 1 (lo-
cation) and 3 (sales) of Figure 1 only and uses the definition vq

i j
′ := aq

j
′−α ′di j instead of

(2). A no purchase option is not considered in MAXCAP-R, i.e. we have (6) instead of (7).
Furthermore, cI = cE = 0. (9)–(15) “reduces” to:3

max
yE

Π
′
E(y

E) = ∑
i∈V

∑
j∈V

π(i)yE
j ·

es(aE
j
′−α ′di j)

eΛ I
i
′
+ ∑

k∈V
yE

k es(aE
k
′−α ′dik)

(24)

subject to (12),(15)

Note that MAXCAP-R can not directly be interpreted to be a special case of LPL even if
LPL’s no purchase option is dropped, since we assume β > 0 and p̄ > max

q∈{I,E}
cq.

Theorem 3 (Benati (2000); Benati and Hansen (2002)) MAXCAP-R is NP-hard.

In the following, we will adapt the NP-hardness proof of Theorem 3 as presented by
Benati (2000) and Benati and Hansen (2002) to the MAXCAP-R with an additional no
purchase option (MAXCAP-RNP).4 Here, the probability that a customer located in vertex
i ∈V chooses facility j ∈ Xp∪Yr of player q is given by

Pq
i j
′
=

es(aq
j
′−α ′di j)

eΛ I
i
′
+ eΛ E

i
′
+1

.

Given a set Yr of entrant locations, we define zi(Yr) := ∑
j∈Yr

π(i)PE
i j
′.

The proof is based on a reduction of the NP-hard Dominating Set (DS) problem (Garey
and Johnson, 1979): Given a network N = (V,E,λ ) with λ (uv) = 1 for all [u,v] ∈ E and a
positive integer r ≤ |V |, is there a set V ′ ⊆ V with |V ′| ≤ r and D(i,V ′) := min{d(i, j)| j ∈
V ′} ≤ 1 for all i ∈V ?

Given an instance IDS of DS, we construct an instance IM of MAXCAP-RNP as follows.
Set π(v) = 1 for every vertex v ∈V and add a vertex z with π(z) = 0. Denote the augmented
vertex set by V ′. Connect z to every vertex v ∈ V by an edge [z,v] of length λ (zv) = 2. Set
p = 1 and locate the incumbent’s facility in z. Moreover, choose aE

j
′
= 1.5α ′ for all potential

entrant facility sites j and aI
z
′
= 1.5α ′ for the incumbent facility in z. Set s= 1. We will prove

(in analogy to Benati, 2000) that there exists a value α ′ > 0 such that any optimal solution
to IM provides a dominating set of IDS if one exists.

Given a solution Yr to IM , define V0 := {v ∈V |D(v,Yr) = 0}, V1 := {v ∈V |D(v,Yr) = 1}
and V2 := {v∈V |D(v,Yr)≥ 2}. Note that Yr may contain vertex z while this is not the case for
the sets V0 to V2. V0 and V1 are referred to as dominated sets of V , V2 is the non-dominated set
of V . The elements are called dominated and non-dominated vertices, respectively. Observe
that zz(Yr) = 0.

Lemma 3 Let i ∈ V2. Then, for every ε1 > 0, there exists a value α ′1, such that for every
α ′ ≥ α ′1 we have zi(Yr)≤ ε1.

3 Note that, differing from Benati (2000), we allow co-location of the players.
4 While the statements are essentially the same as in Benati (2000), modifications are needed with respect

to the transformation of Dominating Set instances and the proofs of Lemmas 3 and 4.
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Proof It is easy to see that ∑ j∈Yr eaE
j
′−α ′di j ≤ re−0.5α ′ . Therefore,

zi(Yr)≤
re−0.5α ′

re−0.5α ′ + e−0.5α ′ +1
=

r
r+1+ e0.5α ′

.

Now lim
α ′→∞

r
r+1+e0.5α ′ = 0 which proves the claim. ut

Lemma 4 Let i∈V0∪V1. Then, for every ε2 > 0, there exists a value α ′2, such that for every
α ′ ≥ α ′2 we have zi(Yr)≥ 1− ε2.

Proof It is easy to see that ∑ j∈Yr eaE
j
′−α ′di j ≥ e0.5α ′ . Therefore,

zi(Yr)≥
e0.5α ′

e0.5α ′ + e−0.5α ′ +1
=

1
1+ e−α ′ + e−0.5α ′

= 1− e−α ′ + e−0.5α ′

1+ e−α ′ + e−0.5α ′
.

Now lim
α ′→∞

(
1− e−α ′+e−0.5α ′

1+e−α ′+e−0.5α ′

)
= 1 which proves the claim. ut

Lemma 5 (Benati (2000)) There exists a finite value α̂ ′ such that any optimal solution to
IM dominates the maximum number of vertices of V .

Proof Let Y 1
r and Y 2

r be two feasible solutions to IM with |V0∪V1|= τ and |V0∪V1|= κ , re-
spectively. That is, Y 1

r dominates τ vertices and Y 2
r dominates κ vertices of V . Assume τ > κ .

Then, from Lemma 4 we get ∑i∈V ′ zi(Y 1
r )≥ τ(1−ε2), where we define ε2 := e−α ′+e−0.5α ′

1+e−α ′+e−0.5α ′ .

Similarly, from Lemma 3 we get ∑i∈V ′ zi(Y 2
r ) ≤ κ + (n− κ)ε1, where we define ε1 :=

r
r+1+e0.5α ′ .

Define ε := max{ε1,ε2}. We want to guarantee that ∑i∈V ′ zi(Y 1
r )> ∑i∈V ′ zi(Y 2

r ). A suffi-
cient condition is τ(1− ε)> κ +(n−κ)ε , or, equivalently, τ−κ > (n−κ + τ)ε . It is easy
to see that the latter statement is true if ε < 1/(2n), because τ−κ ≥ 1 and (n−κ +τ)≤ 2n.
Since we can make ε arbitrarily small by increasing α ′, we have proven the claim. ut

It is easy to confirm that ε < 1/(2n) (as required in the proof of Lemma 5) is true
if α ′ > 2ln(4rn). Therefore, there exists a polynomially bounded, finite value α̂ ′ which
guarantees that any optimal solution to IM provides a dominating set of IDS if one exists.
The fact that MAXCAP-RNP is NP-hard follows readily:

Theorem 4 MAXCAP-RNP is NP-hard.

We conclude:

Theorem 5 LPL is NP-hard.

Proof Consider an arbitrary instance IM of MAXCAP-RNP. Now construct an instance ILPL
of LPL on the same network and with the same number and predefined locations of incum-
bent and entrant facilities, by setting cI = cE = 0 and choosing arbitrary values p̄ > 0 and
β > 0 such that conditions (23) hold. ILPL reduces to a pure location game with parametric
prices pI = pE = p̄ (Lemma 2). Set α = α ′ and aq

j = aq
j
′
+ β p̄, q ∈ {I,E} for all of the

players’ potential facility locations j.
It is easy to see that any optimal solution of ILPL is optimal for IM as well. Observe

that the objective function values differ by a factor of p̄ as chosen above. Thus, we have
shown that, given an instance of the NP-hard MAXCAP-RNP, there exists a polynomial
transformation to an instance of LPL, which, in turn, proves that LPL is NP-hard. ut
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4 Pricing stage

In this section we will analyze numerical approaches to computing local price equilibria.
Since the players are profit maximizers, the first order conditions (stationary conditions) for
finding an equilibrium are as follows:

∂Πq

∂ pq
(pI , pE)


≤ 0 if pq = cq,

= 0 if 0 < pq < p̄,
≥ 0 if pq = p̄,

q ∈ {I,E}. (25)

Observe, that, due to the restriction of the players’ strategy spaces by upper and lower
bounds, a local price equilibrium will not necessarily be characterized by ∂Πq/∂ pq = 0
for both players q ∈ {I,E}. Figure 2 depicts the contour plot of an example instance.5 The
curves (called contours) track the finite zeros of the partial profit derivatives of the players. In
Figure 2 these lines divide the plane into areas of positive and negative partial profit deriva-
tives. The unique Nash equilibrium is pN

I = p̄ = 100 (∂ΠI/∂ pI > 0), pN
E = 85.87 (∂ΠE/

∂ pE = 0). We will refer to equilibria of this type as degenerate. Numerical approaches will
have to suitably address the potential existence of such degenerate equilibria.

Entrant price
10 20 30 40 50 60 70 80 90 100

10

20
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40

50
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70

80

90

100
Incumbent contour
Entrant contour

∂ΠI
∂ pI

< 0

∂ΠE
∂ pE

< 0

∂ΠI
∂ pI

> 0, ∂ΠE
∂ pE

> 0

Fig. 2 Nash equilibrium with ∂ΠI/∂ pI > 0

It is easy to show that

∂ 2Πq

∂ p2
q
(pI , pE) =−2sβ ∑

i∈V
π(i)(Ziq−Z2

iq)+(pq−cq)s2
β

2
∑
i∈V

π(i)(2Z3
iq−3Z2

iq +Ziq), (26)

where Zq is defined as in (4) and we define Ziq := ∑k∈Zq Pq
ik for a given i ∈ V , by applying

results of Section 3.1 (see, in particular, (16)–(21)). To make sure that a solution p= (pI , pE)
to (25) locally maximizes the payoff function of each player in the player’s price (second
order conditions), we proceed as follows: If both elements of p are smaller than p̄ and larger

5 Please refer to Online Resource “Degenerate Equilibrium Example Instance” (provided as supplementary
material with this paper) for details on the example instance.
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than cI and cE , respectively, we check if (26) is strictly smaller than zero for both players
q ∈ {I,E}. Similarly, if exactly one element pq, q ∈ {I,E}, of p is at its upper bound and
pq̄ > cq̄, we check if the opposing player q̄’s condition (26) is strictly smaller than zero. For
each element pq, q ∈ {I,E}, of p, however, that is at its upper bound, we check, if

– ∂Πq
∂ pq

(p)> 0, or

– ∂Πq
∂ pq

(p) = 0 and ∂ 2Πq
∂ p2

q
(p)< 0, or

– ∂Πq
∂ pq

(p) = 0, ∂ 2Πq
∂ p2

q
(p) = 0, and ∂Πq

∂ pq
(pq− ε, pq̄)> 0 for a sufficiently small ε .

We proceed analogously if elements of p are at their lower bounds.

4.1 Computing equilibrium prices

As shown by Morrow and Skerlos (2011), natural (numerical) candidates to solving (25)
include Newton’s method and fixed-point iteration approaches.6 The authors show a spe-
cific fixed-point iteration to result in a reliable method for computing stationary points. In
the following, we will have to adapt their approach to include upper and lower bounds on
prices and, thus, be able to potentially find degenerate local price equilibria. The fixed-point
iteration is based on reformulating ∂Πq/∂ pq = 0 by substituting (16) and (20) and applying
some straightforward algebraic operations:(

pI

pE

)
=

(
cI

cE

)
+

(
ζI(pI , pE)

ζE(pI , pE)

)
, (27)

where we define(
ζI(pI , pE)

ζE(pI , pE)

)
:=

 (pI− cI)
∑i∈V π(i)Z2

iI(pI ,pE )

∑i∈V π(i)ZiI(pI ,pE )

(pE − cE)
∑i∈V π(i)Z2

iE (pI ,pE )

∑i∈V π(i)ZiE (pI ,pE )

+

(
1

sβ

1
sβ

)
. (28)

In analogy to Morrow and Skerlos (2011), we will refer to (27) as a markup equation.
This name is motivated by the fact that, on the right hand side of (27), a nonnegative value
(markup) is added to the cost cq of player q ∈ {I,E}.

The combined conditions (25) are, by definition, equivalent to the Mixed Complemen-
tary Problem (Ferris and Pang, 1997; Munson, 2000)

cq ≤ pq ≤ p̄ ⊥ −
∂Πq

∂ pq
(pI , pE), q ∈ {I,E}. (29)

Because

−
∂Πq

∂ pq
(pI , pE) = sβ

(
∑
i∈V

π(i)Ziq(pI , pE)

)
[pq− cq−ζq(pI , pE)] , q ∈ {I,E},

6 Choi et al (1990) and Rhim and Cooper (2005), among others, apply a variational inequality approach
to compute Nash equilibria in prices. In the context of LPL, a major drawback of this approach is, among
others, the necessity of having to solve a series of optimization problems. In each of these solution processes,
divergence issues may arise.
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and, because sβ ∑i∈V π(i)Ziq(pI , pE)> 0, the combined conditions (25) are equivalently

cq ≤ pq ≤ p̄ ⊥ pq− cq−ζq(pI , pE), q ∈ {I,E}. (30)

Define
Γq(p) := max{min{p, p̄},cq}, q ∈ {I,E}, (31)

to be the Euclidean projection of p ∈ R onto [cq, p̄]. The solutions to (30) are projections of
the zeros of the Normal Map (Dirkse, 1994). In this case,

pq− cq−ζq(ΓI(pI),ΓE(pE)) = 0, q ∈ {I,E},

for any (pI , pE) ∈ R2 if and only if (ΓI(pI),ΓE(pE)) solves (30). Hence, we can do a fixed-
point iteration

pq← cq +ζq(ΓI(pI),ΓE(pE)), q ∈ {I,E},

but this iterates over R2. We can, however, work with [cI , p̄]× [cE , p̄] by projecting after
updating:

pq← Γq (cq +ζq(pI , pE)) , q ∈ {I,E}, (32)

given that the outer projection keeps iterates within [cI , p̄]× [cE , p̄], (31).
In the remainder of this paper we will refer to fixed-point iteration (32) as FPI. Note that

FPI may converge to stationary points that do not correspond to local price equilibria, as
these points might relate to a local profit minimum of a player’s profit function when taking
the price of the other player as given. Thus, we provide 625 starting price vectors, being
equally dispersed over [cI , p̃I ]× [cE , p̃E ], where p̃q, q ∈ {I,E}, is computed by applying
Algorithm 1 (see Appendix A) to avoid starting FPI in areas of low profits and small partial
profit derivatives of both players (recall that limpq→∞ Πq = 0 and note that limpq→∞

∂Πq
∂ pq

= 0
for q ∈ {I,E}, see Appendix B). Basically, the algorithm gradually “cuts off” parts of the
domain of prices until the profit of at least one of the players is larger than 10−4 at the
resulting vector of maximal prices. We set the maximum number of FPI iterations in each
call to 230.

4.2 Some example instances

Figure 3 presents the contour plot of an example instance without a local equilibrium in
prices.7 Note that we have ∂ 2ΠI/∂ p2

I > 0 in the intersection point (pI = 39.98, pE = 118.83)
of the incumbent and entrant contour (see Figure 4). Furthermore, even if we increase the
value of p̄ by an arbitrarily large value, this instance will not have an equilibrium in prices.
However, it is easy to see that we can enforce a degenerate equilibrium in prices when
lowering p̄ to - for example - a value of 80.

Similarly, Figure 5 depicts the contour plot of an example instance with multiple local
equilibria in prices (marked by circles), (10.87,12.43) and (12.27,16.05).8 Figure 6 shows
the corresponding profit functions of the players. It is easy to see that neither of the local
equilibria represent a Nash equilibrium in prices. As before, we can enforce a degenerate
equilibrium in prices when lowering p̄ to a sufficiently small value.

7 Please refer to Online Resource “No Equilibrium Example Instance” (provided as supplementary mate-
rial with this paper) for details on the example instance.

8 Please refer to Online Resource “Multiple Local Equilibria Example Instance” (provided as supplemen-
tary material with this paper) for details on the example instance.
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Fig. 3 Contour plot of example instance without local equilibrium
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(b) Entrant profit for pI = 39.98

Fig. 4 Profit functions of example instance without local equilibrium

4.3 Computational experiments

In order to analyze the performance of FPI, we have conducted a series of computational
experiments with the location stage being excluded from the numerical tests by randomly
selecting the players’ facility sites from the vertex set of the test networks. Test instances
were run on a laptop with an Intel Core i7-4700MQ CPU, 2.4 GHz, 8GB system memory,
running under the 64bit Windows 7 Professional operating system.

All test instances have been generated randomly with each parameter being drawn from
a uniform distribution over a specific interval. The underlying networks are complete with
edge length λ (uv) ∈ [1,50] for all [u,v] ∈ E and customer demand π(u) ∈ [0,100] for all
u∈V . Moreover, cq ∈ [1,10], q∈{I,E}. If not stated otherwise, we fix s to one (as frequently
done in the literature), we set n = 100, and we select aq

j from the interval [10,50] for all
j ∈ Yr ∪Xp. All algorithms have been coded in C++.
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Fig. 5 Contour plot of example instance with multiple local equilibria
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(d) Entrant profit for pI = 12.27

Fig. 6 Profit functions of example instance with multiple local equilibria
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Sensitivity parameters for price and distance typically range from zero to about 4 in
the literature (for similar ranges of the other parameters as above), see, for example, Benati
(2000); Benati and Hansen (2002); Rhim and Cooper (2005); Thomadsen (2005). We have
therefore generated six sets of LPL instances with n = 100 and 10,000 instances in each
set. Table 1 presents the underlying ranges for the random generation of the corresponding
parameters. Note that Theorem 2 holds for every instance of Set 1. Hence, the players’ payoff
functions are concave and every local price equilibrium is a pure strategy Nash equilibrium
in prices.

Table 1 Sets of test instances

α β p̄ s aq
j for all j ∈ XP ∪Yr r p

Set 1 [0.015,0.4] [0.015,0.2] 100 0.1 [0,20] [1,5] [1,5]
Set 2 [0.015,0.5] [0.015,0.5] 150 1 [10,50] [1,5] [1,5]
Set 3 [0.015,1] [0.015,1] 150 1 [10,50] [1,5] [1,5]
Set 4 [0.015,2] [0.015,2] 150 1 [10,50] [1,5] [1,5]
Set 5 [0.015,3] [0.015,3] 150 1 [10,50] [1,5] [1,5]
Set 6 [0.015,4] [0.015,4] 150 1 [10,50] [1,5] [1,5]

Figures 7 and 8 provide results on the convergence behavior of FPI (with potentially
more than one starting price vector, as described in Section 4.1) for the test sets. Figure
7(a) shows that almost all calls of FPI converge to a local equilibrium in prices instantly
(given that a local equilibrium exits). Only one instance of set 5 and two instances of set
6 required additional FPI calls with different starting price vectors. Two instances of set 5
and 28 instances of set 6 do not have a local price equilibrium (Figure 7(b), cf. also Section
4.2). The nonexistence of local price equilibria has been manually confirmed for all those
instances.

inst. [#]1 2 3 4 5

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

1

2

(a) Additional FPI calls

inst. [#]5 10 15 20 25

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

2

28

(b) No local equilibrium

Fig. 7 Computational results - FPI convergence

Computational times are rather small, as can be seen from Figure 8. The figure presents
average (Figure 8(a)) and maximum (Figure 8(b)) running times of FPI over the instances
that have local price equilibria. It is apparent from these figures that a (combined) increase
of the upper bounds on the sensitivity parameters α and β induces the need for more com-
putational effort.

As to be expected (Morrow and Skerlos, 2011), we conclude that FPI reliably converges
to local price equilibria in case of their existence.
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Fig. 8 Computational results - FPI running time

When analyzing the effects of increasing sensitivity parameters separately, we found
that α’s effect on the potential nonexistence of local price equilibria is stronger than β ’s
influence. Hence, Figure 9(a) takes a closer look at α’s effect on the existence of local
equilibria. Here, we have increased both, the upper and lower bound on α , simultaneously
for 1,000 test instances in 16 test sets for three different values of p̄ and β ∈ [0.015,0.5].
p and r have been fixed to 5. For each test set, α’s lower bound equals the upper bound of
the prior test set, with a lower bound of zero in the first set. Increasing coefficients of spatial
friction at first increase the amount of instances without local price equilibria. If we keep
increasing α , however, instances tend to “regain” local equilibria. The latter statement holds
for decreasing values of p̄ as well.
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Fig. 9 Existence of equilibria and influence of network size

Figure 9(b) presents results on the effect of increasing network size on computational
times. The plot is based on 1,000 test instances in six sets with α ∈ [0.015,1.5], β ∈
[0.015,1.5], p̄ = 150 and r = p = 5. Corresponding instances of different sets vary in net-
work size and facility locations. We find an almost linear increase of average computational
times over the network size.
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5 Location stage

Benati and Hansen (2002) provide examples, showing that the incorporation of random
utility models into competitive location models may actually affect the optimal locations
of facilities. It is the aim of this section to show that including an additional pricing game
supports the same reasoning.

Let r = p= 1, consider the network and the parameters of Figure 10 (edge weights corre-
spond to edge lengths) and set X1 = {0} (gray vertex), α = 1.974, p̄= 42, cI = 2.87, cE = 4.1
and s = 1. For all potential entrant locations and three different price sensitivity levels, Ta-
ble 2 presents the corresponding unique Nash equilibria in prices9 and entrant’s profits. As
claimed above, we find a strong effect of β on the optimal entrant’s choice (marked by an
asterisk in Table 2). While β ≈ 0 induces co-location of the players, larger price sensitivity
levels enforce differentiation of locations (in the case of the example instances).10

1

π(1) = 17

aE
1 = 29.18

0

π(0) = 53

aI
0 = 22.2

aE
0 = 29.08

2

π(2) = 33

aE
2 = 20.69

27

26

31

Fig. 10 Example network

Table 2 Optimal entrant locations under different price sensitivity levels

β Entrant location Unique Nash equilibrium in prices, (pN
I , pN

E ) ΠE

0* (42,42) 2006.41
6.46 ·10−6 1 (42,42) 644.227

2 (42,42) 1250.56

0 (4.8,13.3) 400.645
0.629 1 (30.8,41.4) 607.43

2* (30.8,28.6) 756.927

0 (3.4,5.9) 72.531
2.323 1* (8.5,11.4) 116.205

2 (8.5,8.0) 114.543

Hence, we may conclude that price competition is worth being considered in competi-
tive location models that utilize random utility models. This, of course, is only true if this
is not necessarily accompanied by large computational costs. Therefore, in order to roughly
analyze solution times and qualities of related heuristics, we have implemented two straight

9 The uniqueness of the price equilibria has been manually confirmed by plotting the corresponding profit
derivatives over the domain of prices.

10 Note that β ≈ 0 results in LPL reducing to a pure location game with parametric prices, i.e. a model
“without” price competition, see Theorem 4 and Lemma 2.
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forward algorithms that apply FPI (Section 4.1) in C++. The development of more sophisti-
cated approaches is left for future research. Especially, such approaches will need to provide
adequate strategies to overcome FPI’s major drawback, i.e. the fact that (in the case of exis-
tence of at least one local price equilibrium) it determines one local price equilibrium only.
In our analysis, we will refer to a entrant’s choice of r different locations as a solution to an
instance of LPL, if there exists a corresponding local equilibrium in prices.

The greedy algorithm proceeds as follows: Initialize it := 1 and Y0 := /0 (none of the
entrant’s facilities have been located). Repeat for all potential facility sites v ∈ V \Yit−1:
Set Yit = Yit−1 ∪{v}, determine a local equilibrium in prices (if an equilibrium exists) by
calling FPI, calculate the corresponding entrant’s profit (if no equilibrium exists, assume the
entrant’s profit to be -1) and reset Yit =Yit−1. Eventually, locate j in the candidate location v′

yielding the maximal profit, Yit =Yit−1∪{v′}. If no local equilibrium in prices exists for any
candidate location, choose a random (and feasible) vertex. If all facilities have been located,
i.e. it = r, and a local equilibrium in prices exists, then stop. Otherwise, if it < r proceed
by setting it = it+ 1 and locating the next facility in the same manner. If it = r and a local
equilibrium in prices does not exist, keep generating random sets of entrant’s locations until
a set with an existing local price equilibrium is found. If no such set is found within a time
limit tmax, then stop.

Additionally, we have implemented a basic tabu search heuristic (cf. Glover and Laguna,
1997, for an introduction to tabu search) with the following neighborhood structure: For a
set of entrant’s locations Yr and for every i ∈ Yr and j ∈ V \Yr, generate Yr \ {i}∪{ j} (1-
interchange moves, denoted by (ī, j)). Evaluate each set of locations by calling FPI as in the
greedy algorithm. Execute the best non-tabu move. Additionally, apply a simple aspiration
criterion, i.e. allow a tabu move if it results in a solution with an objective value that is
better than the currently best known entrant’s profit. If no neighboring set of locations has
a local equilibrium in prices, choose a random neighbor. If a move (ī, j) is executed, record
the opposing move ( j̄, i) and, additionally, the same move as tabu for tl iterations. Start
the procedure by selecting a random set of p different locations. If circling around a local
optimum is detected, restart the search process at a randomly generated set of locations
(diversification). Terminate the tabu search heuristic after a fixed number of maxit iterations
or if the same local optimum has been found maxloc times.

We have randomly generated a total of 400 test instances as described in Section 4.3,
with λ (uv)∈ [1,50] for all [u,v]∈E, π(u)∈ [0,100] for all u∈V , s= 1, p̄= 150, cq ∈ [1,10],
aq

j ∈ [30,40] for all j ∈V and q ∈ {I,E}. The test instances are grouped with respect to their
(randomly drawn) sensitivity parameters, as well as their network sizes and the number
of players’ facilities; see Tables 3 and 4. Five instances were generated in each group. The
incumbent’s locations were randomly drawn from the vertex set. The tabu search parameters
have been fixed to tl = 25, maxit = 100 and maxloc = 4.

Table 3 depicts results on the quality of the heuristics’ solutions. Solution quality is
measured in terms of objective function values (at the corresponding local price equilibria)
in relation to the objective function values of the best solutions found by complete enumer-
ation over all potential location settings. However, as before, we apply FPI to determine a
local price equilibrium for each of these location settings, so that the enumeration algorithm
is not guaranteed to find optimal solutions. All cell entries in Table 3 are average values
over the corresponding group of test instances. Table 4 presents the corresponding average
computational times.

These basic results indicate that our observations of Section 4.3 (reliable convergence
behavior of FPI within rather small computational times) result in standard heuristics tend-
ing to determine high quality solutions within acceptable time, even for “challenging” ranges
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Table 3 Average solution quality of location heuristics

β ∈ [0.015,2] β ∈ [0.015,2] β ∈ [0.015,2] β ∈ [2,3] β ∈ [3,4]
α ∈ [0.015,2] α ∈ [2,3] α ∈ [3,4] α ∈ [0.015,2] α ∈ [0.015,2]

n p r greedy tabu greedy tabu greedy tabu greedy tabu greedy tabu

30

3
3 0.92 1.00 0.92 1.01 0.83 1.00 0.92 1.01 0.95 1.00
4 0.98 1.00 0.95 1.00 0.88 1.02 0.88 1.00 1.00 1.00
5 0.94 1.00 0.77 1.00 0.88 0.96 0.98 0.99 1.00 1.00

4
3 0.91 1.00 0.84 1.02 0.96 0.99 1.00 1.02 0.98 0.99
4 0.94 1.00 0.89 1.00 0.94 1.05 0.95 1.00 0.99 1.00
5 0.93 0.98 0.94 0.99 0.69 1.01 0.95 1.00 1.00 1.00

50

3
3 0.99 1.00 0.71 0.97 0.86 0.94 0.97 1.00 1.00 1.00
4 0.99 1.00 0.82 1.00 0.89 1.01 1.00 1.00 0.96 1.00
5 0.96 1.00 0.76 0.82 0.75 0.99 0.98 1.00 1.00 1.00

4
3 0.99 1.00 0.95 1.00 0.82 0.94 0.98 1.00 1.00 1.00
4 0.94 1.00 0.83 1.00 0.90 0.96 0.99 1.00 0.98 1.00
5 0.97 1.00 0.62 0.79 0.75 0.98 1.00 1.00 0.91 1.00

90
3

3 1.00 1.00 0.98 1.00 0.84 0.95 1.00 1.00 1.00 1.00
4 0.99 1.00 0.91 1.00 0.93 0.99 1.00 1.00 1.00 1.00

4
3 1.00 1.00 0.98 1.00 0.92 1.00 0.99 1.00 1.00 1.00
4 1.00 1.00 0.93 1.00 0.77 0.83 1.00 1.00 1.00 1.00

Table 4 Average solution time of location heuristics (minutes)

β ∈ [0.015,2] β ∈ [0.015,2] β ∈ [0.015,2] β ∈ [2,3] β ∈ [3,4]
α ∈ [0.015,2] α ∈ [2,3] α ∈ [3,4] α ∈ [0.015,2] α ∈ [0.015,2]

n p r greedy tabu greedy tabu greedy tabu greedy tabu greedy tabu

30

3
3 0.448 13.501 1.280 4.833 0.521 7.821 0.062 1.888 0.028 1.406
4 0.006 0.062 0.251 25.130 0.650 5.691 0.093 3.396 0.046 0.179
5 0.003 10.502 0.104 17.896 0.153 14.614 0.059 4.343 0.016 0.072

4
3 0.026 2.121 0.128 13.385 0.069 1.922 0.228 19.133 0.020 0.136
4 0.079 5.378 0.124 5.705 0.130 18.841 0.096 18.505 0.317 1.172
5 0.214 14.922 0.136 13.029 0.192 38.202 0.141 4.934 0.018 0.579

50

3
3 0.034 1.621 1.606 41.607 0.313 12.593 0.009 0.699 0.010 0.318
4 0.011 0.592 0.558 59.089 0.590 47.934 0.090 0.593 0.037 31.596
5 0.013 2.335 0.179 56.748 0.250 42.414 0.023 1.302 0.012 0.219

4
3 0.088 2.200 0.104 9.850 0.290 40.927 0.009 0.132 0.008 0.158
4 0.053 6.243 0.504 37.619 0.573 71.752 0.012 2.251 0.010 0.671
5 0.107 6.944 0.966 144.270 0.139 25.335 0.116 3.201 0.088 1.136

90
3

3 0.020 0.186 0.019 0.489 0.306 6.056 0.015 0.309 0.016 0.123
4 0.029 0.264 0.324 5.519 0.646 78.288 0.015 0.266 0.024 0.218

4
3 0.018 0.140 0.049 5.701 0.134 5.130 0.011 0.195 0.018 0.127
4 0.022 0.227 0.014 1.025 0.580 112.436 0.014 0.200 0.024 0.261

of the sensitivity parameters. Thus, as claimed above, it seems to be reasonable to include
price competition into basic location problems that utilize random utility models. As to
be expected, the tabu search heuristic outperforms the simple greedy algorithm in terms
of solution quality. Additionally, note that we did not encounter test instances without any
locational setting with an existing local price equilibrium.
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6 Conclusion

In this paper, we have discussed a competitive location problem – the (r|Xp)-medianoid
problem – with an additional pricing stage (price competition). As in Benati and Hansen
(2002), we have assumed customers to be utility maximizers and we have applied the well
known multinomial logit approach to model their behavior. Hence, customer behavior has
been assumed to be probabilistic.

We have provided insights into the existence of (local) price equilibria and the com-
putational complexity of the problem. Additionally, we have provided examples of problem
instances with fixed location sets of the players, that demonstrate the potential non-existence
of price equilibria and the case of multiple local equilibria. We have adapted a reliable fixed-
point iteration method to quickly determine local equilibria in prices, assuming that the play-
ers’ locations are given. Based on this numerical method, we have presented first insights
into heuristic algorithms to solving the location problem itself. Finally, we have shown that
different price sensitivity levels of customers affect optimal entrant’s locations

Future research may focus on several issues. First, adequate strategies to finding global
equilibria (Nash equilibria) in prices may be developed. Furthermore, the model may be
generalized in multiple ways. For example, one may let the players charge different prices
in different locations. Research may also focus on the incorporation of other, more general,
random utility models and the estimation of the corresponding parameters from real world
data (see, for example, Cherchi and de Dios Ortúzar, 2008; de Grange et al, 2015; Yáñez
et al, 2011). Other than the multinomial logit model, such models may, for instance, take
account of flexible substitution patterns, as their non-consideration is one of the most limit-
ing factors of our model (cf. already Benati and Hansen, 2002). Additionally, more general
existence and uniqueness conditions on price equilibria may be derived and analyzed. Here,
one may also analyze the economical reasons and effects of nonexistence of price equilibria.
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observations in panel data: Efficiency of mixed logit parameter estimates. Netw Spat Econ
11(3):393–418



Competitive Location and Pricing on Networks with Random Utilities 25

A Determining p̃q

Algorithm 1 Determine p̃q, q ∈ {I,E}
1: ubq := p̄, ∆q := 0, pq = p̄, p̃q := p̄, q ∈ {I,E}
2: it := 1, go := true, pp := false
3: while go do
4: ∆q = 0.1(ubq− cq), q ∈ {I,E}
5: it = 1
6: while go and it ≤ 10 do
7: if Πq(pI , pE )≤ 10−4, q ∈ {I,E} then
8: if it 6= 10 then
9: pq = pq−∆q, q ∈ {I,E}

10: end if
11: if |pq− cq| ≤ 1 for any q ∈ {I,E} then
12: go = false
13: end if
14: if it = 10 then
15: ubq = pq, q ∈ {I,E}
16: end if
17: else
18: go = false
19: pp = true
20: end if
21: it = it +1
22: end while
23: end while
24: if pq < p̄, q ∈ {I,E} and pp then
25: p̃q = pq +∆q, q ∈ {I,E}
26: else
27: p̃q = p̄, q ∈ {I,E}
28: end if

B Vanishing profit derivatives

Lemma 6 lim
pq→∞

∂Πq
∂ pq

= 0 for q ∈ {I,E}.

Proof Making use of the results of Section 3.1 and defining Zq, q ∈ {I,E}, as in (4), we get

lim
pq→∞

∂Πq

∂ pq
= lim

pq→∞

(
∑
i∈V

∑
j∈Zq

π(i)Pq
i j +(pq− cq)∑

i∈V
∑

j∈Zq

π(i) ·
∂Pq

i j

∂ pq

)

=−sβ lim
pq→∞

(pq− cq) ·∑
i∈V

∑
j∈Zq

π(i)Pq
i j

(
1− ∑

k∈Zq

Pq
ik

)
= 0,

because, by applying L’Hospital’s rule, we derive

lim
pq→∞

pqPq
i j = lim

pq→∞

pq

∑
k∈Zq

es(aq
k−aq

j−α(dik−di j))+ c

e
s(aq

j−αdi j−β pq)

= lim
pq→∞

es(aq
j−αdi j−β pq)

csβ
= 0

for any i ∈V , j ∈ Zq and c as defined in (17). ut


